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Abstract. An a posteriori method to cancel out atmo-
spheric optical path fluctuations to achieve accurate phase
restoration and spectral analysis of interferograms is pre-
sented in this paper. The correction algorithm is based
on classical noise reduction methods. The consequence of
piston noise is twofold: 1) loss of spectral information; 2)
loss of visibility phase. A method to measure the modulus
and the phase gradient of visibilities is explained and ex-
amples of restoration of simulated spectra and visibilities
for various S/N ratios are presented.
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1. Introduction

Visible and infrared interferometry is one of the most
promising technics in the coming years to achieve high res-
olution imaging in astrophysics. The equivalent technique
in radio wavelengths is providing the astrophysical com-
munity with sharp images impossible to obtain with classi-
cal single antennas due to fundamental diffraction limita-
tions. At optical wavelengths, coherence of light measure-
ments are strongly degraded by atmospheric turbulence
and may even become impossible. A partial correction of
turbulence modes can be achieved and is already produc-
ing interesting results for imaging. Nevertheless, adaptive
optics cannot compensate for the 0-order mode of atmo-
spheric distortion of wavefronts (the optical path fluctu-
ations or “piston effect”) which causes the loss of phase!
information in interferometry cancelling any attempt to
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1 The position of the white light fringe measured in opd in
wide-band interferometry is roughly, to within a % factor, the
phase of the image Fourier transform, i.e. the phase of the
complex visibility.

reconstruct high resolution images. White fringe position
servoing systems (fringe trackers) make up for the optical
path fluctuations in real time and lock the system onto
the white fringe to perform low noise acquisition through
long integration time, but they fail to record a long se-
quence containing spectral information. The paper starts
with a presentation (Sect. 2) of interferometry and more
especially Double Fourier interferometry and explains why
optical path fluctuations effects are undesirable in inter-
ferometry. In Sect. 3 the properties of atmospheric optical
path fluctuations are listed and simulations are presented.
The piston correction method is explained in Sect. 4 and
results on simulated interferograms are presented. Section
5 is the analysis of the results.

2. General context

The aim of this section is essentially to provide the reader
with a few classical notations as well as basic concepts of
interferometry. Paragraph 2.1 is a brief theoretical tuto-
rial on inteferometry. The purpose of the Double Fourier
interferometric mode probing both temporal and spatial
coherence properties of sources is explained in paragraph
2.2. Eventually, paragraph 2.3 adresses the aim of this
paper, that is to say the nature of the disturbances gen-
erating optical path fluctuations.

2.1. Brief tutorial on interferometry

Equations derivations are classical and can be found in
litterature (Goodman 1985 for example). Nevertheless, I
intend to give a fundamental subset of equations whose
accurate knowledge is mandatory for a good understand-
ing of the remaining of the article. Let us consider two
pupils P; and P, of an interferometer and the correspond-
ing sampled complex amplitudes of an astronomical wave-
front A, (o, t) and Ay (o, t), where o is the wavenumber and
t is time. The two amplitudes are combined and sent to
a detector. The monochromatic energy detected at the



554

output of the combiner is proportional to the average
squared modulus (on a time scale far greater than the
period of the wave) of the sum of the two fields:

I(o,t) = < |A1(0,t) + As(o, t‘)|2 >y (1)
For sake of simplicity, all multiplicative coefficients (detec-
tor gain, interferometer transmission, etc ...) will be set to
one and their expressions will be dropped in the follow-
ing equations. The monochromatic energy collected by the
two pupils (which is proportionnal to the spectrum of the
source) is supposed to be the same and the normalized
total energy over the bandwidth is noted B(o). Equation
(1) is then rewritten as:

I(o,t) = B(o) +2 < Aj(o,t) A5(0,t) >4

= B(o) + B(o) Re{ma(o, 1)}, (2)

where 712(0,t) is the complex degree of coherence of the
two beams coming from the source and collected by the
two pupils of the interferometer. For a monochromatic ra-
diation, it has a simple expression as a function of the
delay T between the two beams (Goodman 1985):

Ma(0yt) = Vig(a)e 2/, 3)
where v is the rate of change of opd. V15 is the coherence
factor of the two beams or fringe visibility and is wave-
length dependent. The value of visibility is determined by
the geometrical aspect of the source and by the geometri-
cal characteristics of the baseline. It is the Fourier trans-
form of the intensity distribution of the source at a spatial
frequency equal to the vector baseline over wavelength ac-
cording to the Van Cittert-Zernike theorem (Born & Wolf
1980; Goodman 1985). Visibility? is the observable mea-
sured by interferometers.
It is equivalent to express delay either as a temporal de-
lay 7 or as an optical path difference x as the ratio of the
two is the speed of the fringes v. In wide band, Eq. (2)
becomes:
I(l‘) =1+ Re {/ B(G)Vvlg(o')efzjﬂo'm dO’} . (4)
band
It is necessary to compensate delay of one the two beams
with respect to the other one when recording the interfer-
ogram because the coherence length, in wide band, is only
a few fringes. Monochromatic waves coherently interfere
around the equal optical path position when the optical
paths of the two beams are matched by a delay line.
The first term in Eq. (4) will be left aside in the follow-
ing and I will only consider the second one which is the

2 More precisely, visibility moduli are straightforewardly

measured by interferometers, a more indirect procedure is used
for measurements of visibility phases, what is measured is the
sum of three phases for a three-telescope loop which is called
phase closure, this special technique was designed to cancel out
additionnal phase errors, see references thereafter in the paper.
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modulated part of the interferogram. When the complex
spectrum is defined as the hermitian part of the spatio-
temporal source spectrum (modulus is an even function
and phase is an odd function of wavenumber):

Be(0) = 5 (B(=0)Vi2(—0) + B(0)Vi3(0)) , ()

N[ =

the modulated part of energy, noted Z(z), gets a more
convenient expression:

+o0 )
B.(0)e*’ ™" do.

— 00

I(z) = (6)

In other words, the Fourier transform of the modulated
interferometric signal is the complex spectrum of the as-
tronomical source.

2.2. Double Fourier interferometry

A few different ways of doing interferometry (mostly de-
pending on measured quantities) exist (see review by M.
Shao 1992). Some interferometers recombine beams in the
pupil plane whereas others are image plane oriented. Here,
no distinction will be made between these two different
philosophies. Some interferometers (type I) are operated
in the long exposure mode, that is to say that a ser-
voed delay line sets the optical path difference (there-
after opd) to a constant value allowing the integration of
the interferometric signal to achieve high signal to noise
(S/N) ratios on fringe modulation. The value of the opd
can be varied to scan through the whole interferogram.
Type II interferometers can be considered as short expo-
sure interferometers. The interferogram is acquired dur-
ing a continuous scan of the opd which is produced either
by the Earth’s rotation or by a translating retroreflect-
ing unit moving at a constant speed or by a combination
of the two. Integration is then no longer possible. Type
I interferometers are not opd fluctuation sensitive as the
opd is servoed, whereas many factors can introduce opd
fluctuations in type II interferometers (this point will be
adressed in Sect. 2.3). Type II interferometers are dedi-
cated to spectral data analysis for they naturally reach a
higher spectral resolution while type I data are reduced
in direct space. These type II interferometers are called
Double Fourier Interferometers (hereafter DFI) because
they both probe spatial and temporal coherence proper-
ties of the light emitted by astrophysical sources (Itoh
& Ohtsuka 1986; Mariotti & Ridgway 1988). Spatial in-
formation is contained in the modulated energy of inter-
ferograms as shown in Sect. 2.1 and is wavelength depen-
dent. The Fourier transform of the interferogram sequence
yields the source temporal spectrum rescaled by the vis-
ibility function. It has been shown (Ridgway et al. 1986)
that an accurate knowledge of the visibility-wavelength
relation would have fruitful astrophysical implications, as
well as visibility as a function of spatial frequency. DFI
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allows the determination of the visibility as a function of
wavelength and is the interferometric mode that is mostly
concerned in the following of the paper.

2.83. Optical path fluctuations and phase information loss

As shown in Eq. (6) an interferogram can be considered
as a temporal sequence whose Fourier transform is pro-
portionnal to the spectrum of the source. The two con-
jugate variables are the opd (or time) in the direct space
and wavenumber (or frequency) in the Fourier space; one
shifts from one set of conjugate variables to the other by
multiplying or dividing by the speed of the fringes. Thus
opd varies linearly with time. This is what one should ex-
pect in an ideal interferometer. In reality this occurs in
a different way. Opd does not vary linearily with time.
Some opd distortions are introduced and have mechani-
cal and atmospheric sources. Vibrations of static optics
on the beam path change its length and make it oscillate.
But they can be lowered to an inoffensive magnitude by
increasing the stiffness of the optics and by absorbing vi-
brations. Non-linearities in the motion of the retroreflect-
ing stage of the delay line cause opd to fluctuate but they
can also be cancelled out by servoing the speed of the
carriage supporting the retroreflector. Some fiercer fluc-
tuations are generated by atmospheric turbulence. Here
we assume that atmospheric perturbations of wavefronts
are reduced to the O-order ones (the spatially averaged
pertubations on the pupil) and that higher orders have
been filtered out by using monomode fibers for example
(Coudé du Foresto & Ridgway 1991; Coudé du Foresto et
al. 1992), by data reduction or with adaptive optics. The
0-order term is known as “piston effect” and opd fluctua-
tions are due to differential piston between two apertures
of the interferometer. But piston and differential piston
stand for the same physical phenomenon.

Opd fluctuations result in the loss of the Fourier relation
between the spectrum and the interferogram sequence pre-
venting physical information recovery from the spectrum.
Figure 3 of Sect. 3 shows four simulated low resolution
spectra. The first one is computed from an opd fluctuation
free interferogram whereas the others simulate observed
spectra with regular turbulence conditions. It is obvious
that without any piston correction no accurate informa-
tion can be extracted from these spectra. Besides, piston
introduces a random shift of the central fringe of the in-
terferogram preventing measurement of the exact phase of
visibilities, the accurate knowledge of which being essen-
tial to reconstruct a high resolution image of the source.
If most sources of optical path fluctuations have neg-
ligeable effects, atmospheric turbulence effects at optical
wavelengths must be taken into account. It is possible to
artificially increase the length of coherent interferogram by
scanning at a high speed. Rapid scanning freezes piston
but it does not reduce its amplitude. Besides, fast scanning
reduces the instrumental visibility (hence the S/N ratio of
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the modulated signal) as the detector response decreases
with increasing frequencies. Turbulence opd fluctuations
thus turn out to be a strong limitation to optimum infor-
mation extraction in optical astronomical interferometry.
In the following Sects. I will expose a method to correct
“pistoned” interferograms to retrieve the modulus of the
spectrum and the phase to within a constant. This method
does not take into account the possibility to retrieve the
exact phase of visibilities and does not address the issue
of image reconstruction in interferometry.

3. Statistical and temporal properties of
atmospheric optical path fluctuations

This section is dedicated to the characterisitics of piston.
The features are used in paragraph 3.6 to simulate piston
and pistoned interferograms.

Energy (arbitrary units)

10 | . .
107 V% 107 Vi 10° 10
Frequency (Hz)

10

Fig. 1. Differential piston power spectrum

3.1. Statistical properties of differential piston

A complete study of statistical properties of turbulence
effects can be found in Roddier (1981) from which this
paragraph is inspired.
Astronomical beams travelling through the turbulent at-
mosphere on their way to the aperture traverse a suc-
cession of thin independent turbulent layers each with a
fluctuation statistics. Resulting from the central limit the-
orem, the overall statistics are Gaussian and are fully de-
termined by the standard deviation. This thus applies to
optical path fluctuations statistics. The standard devia-
tion value a priori depends on wavelength A, fried param-
eter 7y and baselength D. Its expression in meters is:
5/6
262 \ <2 )
To

O = —
21

(7)
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Fig. 2. Effective standard deviation of piston for temporal se-
quencies of finite length. The standard deviation is normalized
to unity for a sequence of infinite duration. Curves are plotted
for three different wind speeds: 10m s™* (full line), 20m s™*
(dashed line) and 30m s™* (dashed and dotted line)

where the subscript e refers to the opd fluctuation stan-
dard deviation. It is interesting to realize the importance
of this effect. Assuming correct seeing conditions for ob-
serving with rp = 60cm at 2.2 um and that the interfer-
ometer baseline is D = 21.2m, the standard deviation for
opd fluctuations is 18.5 um that is about 9 fringes in the
K photometric band (to be compared to the coherence
length of 10 fringes) and an error of 56 radians on visibil-
ity phase measurements. Since rg is proportionnal to A%/,
o. does not depend on wavelength and piston is an achro-
matic effect. The reduction method proposed in this paper
mainly relies on this critical property of atmospheric dif-
ferential piston.

3.2. Temporal properties of differential piston

Let us now focus on the evolution of differential piston
with time. A theoretical average spectrum is given in
Conan et al. (1992) for an infinite outer scale. It is a three-
slope spectrum in Log-Log representation with cut-off fre-
quencies depending on the average speed of turbulent lay-
ers v as defined in Roddier (1981), also depending on the
baselength D and the diameter of the pupils d. These fre-
quencies have the following expressions:

” = 0.5%,

v

vy = 0.3 i (8)
and the slopes are typical of a Kolmogorov turbulence:
—2/3, — 8/3 and — 17/3. Considering parameters given
in Colavita et al. (1987) for observations carried out at the
Mark III interferometer with a 12 m baselength, a 14m s—!
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average wind speed and 2.5 cm apertures, cut-off frequen-
cies are 0.6 and 168 Hz which is in good agreement with
the piston power spectra published in this paper (the data
are in the range 0.001—100 Hz and do not display the third
slope feature).

3.3. The outer scale of turbulence

The idealized temporal and statistical properties given be-
fore are correct to a certain extent. They require the outer
scale of turbulence (scale at which turbulent energy is in-
troduced in the atmosphere) to be infinite. The relation in
Eq. (7) saturates for baselines larger than the outer scale
and energy in the power spectrum saturates at low fre-
quencies. Recent measurements of the outer scale at the
SUSI interferometer site in Australia (Davis et al. 1995)
for baselines ranging between 5 and 80 m state values of
about a few meters. Piston measurements show that re-
lation (7) departs from linearity in Log-Log coordinates
(Fig. 3 of that paper) — for the 20 m baseline, the mea-
sured piston standard deviation is 8.4 um whereas the ex-
pected value is in the range 16 — 30 um, depending on
seeing conditions — and power spectra level out for fre-
quencies below ~ 0.02 Hz. Although there is a controversy
about the outer scale (references can be found in Davis
et al.) it turns out that a finite range is more likely than
an infinite one and that methods based on predictions
from the power spectrum at low frequency that found an
infinite outer scale are not reliable because they are con-
sistant with a wide range of results. Direct measurements
with different baselines are definitely likely to be a good
basis for a good understanding of the properties of piston.
As a consequence, the power spectrum used in this pa-
per, taking into account a finite outer scale, is a four slope
spectrum in a Log-Log diagram with a low cut-off freqe-
uncy at 0.02 Hz and the two cut-off frequencies predicted
by Conan et al. (1992). It is plotted in Fig. 1.

3.4. Differential piston for finite length sequences

Prediction of piston standard deviation by Roddier (1981)
applies to sequences of infinite duration. In real life, in-
terferometric scans are finite in length and, since piston
speed is not infinite, standard deviation on a finite length
is necessarily lower than the prediction. For a sequence of
duration T frequencies below % are atttenuated thus de-
creasing standard deviation. In Appendix A the analytical
expression of standard deviation is given as a function of
scan duration. The result is plotted in Fig. 2 for observing
parameters given in Table 1 for three wind speeds (10, 20
and 30m s~!) spread across the range of observed speeds
in good astronomical sites (E. Gendron, private communi-
cation). Standard deviation for infinite sequence lengths is
normalized to unity. With v = 20m s~ ! and for durations
in the range 0.1 — 1s standard deviation is proportionnal
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to T3 whereas it is proportionnal to T% for shorter dura-
tions. In short, attenuation of piston variations becomes
important for sequences shorter than Viz It is interesting
to derive the coherence time of piston to get a rough esti-
mate of the time scale necessary for a piston peak-to-peak
variation. In the same conditions as those used above, the
coherence time is found to be:

9)

which means that piston varies slowly and that it has to
be determined on long sequences to be averaged out.

Te = 31.5 ms,

3.5. Discussion

Both piston amplitude and temporal behavior are well
known thus allowing realistic simulations as will be shown
in the next section. Interferometer sensitivity to piston is
wavelength dependent. The shorter the wavelength, the
higher the fringe frequency for a given fringe speed, hence
the higher the effective piston coherence time. But, as far
as piston amplitude is concerned, the shorter the wave-
length the higher the relative amplitude of optical path
fluctuations. It is of a great interest to know whether a
numerical piston correction method is more efficient im-
proving amplitude or time coherence. Let us consider sinu-
soidal optical path fluctuations as in Brault (1985) of fre-
quency w and amplitude §. In the spectral domain, these
fluctuations produce two symmetric replicas of the spec-
trum shifted by w and —w and of relative height 6. This
simple example shows that it is more profitable to reduce
piston amplitude to achieve spectrum restoration as the
noise introduced by piston is proportionnal to its ampli-
tude. It also demonstrates that infrared wavelengths are
more suitable for DFI than visible wavelengths.

3.6. Simulations of pistoned interferograms

The simulations presented in this paper are in the K pho-
tometric band centered at 2.2 um. The simulated interfer-
ometer is the fibered recombination unit FLUOR at the
focus of the IOTA interferometer as explained in Perrin
et al. (1995). The characteristics of the inteferometer are
listed in Table 1. The source is supposed to be unresolved
at any wavelength in the band yielding a constant visibil-
ity of 1. The spectrum is a spectrum of a blackbody at
3500 K seen through aK filter.

There are 1024 samples per sequence. Given the aver-
age wind speed v, the scanning frequency v¢, I first com-
pute a Gaussian sequence of average 0 and of standard de-
viation 1. This sequence is filtered with the piston power
spectrum given in Sect. 3.2 and is normalized to a stan-
dard deviation of o. attenuated by the factor given by
curves in Fig. 3. The length of each sequence is 400 ym
corresponding to a scan duration of 160 ms and yielding
an attenuation factor of 0.57 and a standard deviation of
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Table 1. Simulation parameters

FLUOR-IOTA hardware caracterisitics

baselength (D) 21.2m
wavelength (Ao) 2.2 ym
apertures diameter (d) 0.45m
Nominal parameters

Fried parameter (7o) 60 cm
wind speed (v) 20m s~!
fringe speed (vr) 5mm s~ *
fringe frequency (vf) 2274Hz
saturation frequency (1) 0.02Hz
low cut-off Kolmogorov frequency (v1)  0.45Hz
high cut-off Kolmogorov frequency (v2) 13.33Hz

10.5 ym. This final sequence is the opd fluctuation as a
function of opd z: €(x). I then compute the nominal in-
terferogram I(x) given in Eq. (4) and normalized to an
average of 1. Eventually, the pistoned interferogram is
I (z) = I(z + €(x)). In interferometers, the zero opd is
computed relative to the knowledge of the metrology of
the system. It is known to within a constant which is the
instrument opd. We assume in the following that the in-
strument opd is zero (we only consider the errors due to
the atmosphere).

Figure 3 displays a set of four interferograms simulating
an observation of a 3500 K blackbody spectrum star with
a resolution of 25 cm 1. On each line the first graph is the
interferogram followed by the modulus of the spectrum,
the phase of the spectrum and the piston sequence. The
speed of the fringes is 5 mm s~! yielding a fringe frequency
of 2274 Hz. The wind speed is 20m s~ !. The observing
conditions are supposed to be quite good with rg = 60 cm
at 2.2 um, hence a seeing of 0.7 arcsec. These parameters
are hereafter referred to as the nominal parameters and
are listed in Table 1.

The first interferogram is not pistoned. When comparing
the pistoned ones to this one it is obvious that the speed of
the fringes is varying, some fringes being stretched while
others are compressed (hence the analogy with the me-
chanics term “piston”), and that the whole interferogram
is shifted with a random position offset. The shape of the
modulus of the spectrum has changed. When piston is ac-
celerating in the main lobe of the interferogram, fringes
are compressed which increases their apparent frequency.
The spectrum support is then shifted to higher frequen-
cies and enlarged as the envelope of the fringes is tight-
ened. This is what can be seen on the second sequence.
The opposite behavior is seen on the third sequence where
piston is decelerating. The first derivative of piston thus
shifts the interferogram in the frequency domain. Higher
orders even destroy low resolution information as shown
by the simulations. In the fourth sequence, the main lobe
of fringes is only slightly pistoned as it has been recorded
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Fig. 3. Simulations of interferometric observations with atmospheric optical path fluctuations. Each line corresponds to a
different piston sequence. For each sequence the interferogram, the modulus of the spectrum, the phase of the spectrum and

the piston perturbation are plotted

during a phase when piston was flat. Its support is in the
correct range but the spectral information is destroyed.
Concerning phase, it is constant in the original interfero-
gram whereas it is a function of wavelength in the pistoned
ones. It is dominated by a linear component because of the
position offset, but some higher order terms are introduced
and are due to the asymmetry of the interferograms.
These simulations clearly show that there is a poor correla-
tion between successive pistoned spectra and that spectral
information such as line strength cannot be recovered in a
direct manner. Let us now focus on a method to retrieve
spectral information.

4. Statistical reduction of differential piston

The reduction method which is developped in the follow-
ing is based on an analytic expression of the fringe packet
by means of a Fourier analysis. It does not rely on any
model and is thus valid for any geometry of the source.
The first part of this section is dedicated to the definition,
the calculus and the computation of the phase function.
In the second part the problem of reduction is addressed.

4.1. The phase function
4.1.1. Definition

The modulated part of the interferogram as defined by
Eq. (6) can be written as the product of a slowly varying
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Fig. 4. Algorithm for the correction of the piston effect

positive function, the envelope, by a rapidly oscillating
function:

I(z) = p(x) cos(¢(x)), (10)
where ¢(z) is the phase function. ¢ can be defined in dif-
ferent ways as it is the argument of a cosine function. For
the purpose of the correction algorithm it will be a mono-
tonic, strictly increasing function. It is not continuous and
makes jumps of 7w when the envelope becomes zero and has
no derivative.

4.1.2. Calculus

The interferogram of Sect. 2 was defined in wide band but
is band limited as the light is filtered. For o, a wavenum-
ber within the support of the one-sided spectrum or the
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Fig. 5. Sequence of functions computed to resample the inter-
ferograms with an opd corrected of the piston effect as defined
by the algotihm of Fig. 4
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spectrum defined for positive wavenumbers, I define the
shifted spectrum S by:

S(o) = B(o + 0q) Vi5(0 + 09). (11)

The complex spectrum is now expressed with the shifted
spectrum:

1
B.(0) = i(S(G—JO)JrS*(—J—GO)). (12)
This yields a new expression for Eq. (6):
1 )
I(z) = 5.7-'71 [S(0)] (z)e? ™0 4 (13)
1

SF S (o)) (@)e 2o,
where F is the Fourier transform operator. Let us now
consider the inverse Fourier transforms of the hermitian
and anti-hermitian parts of the shifted spectrum, noted
respectively E and O, and defined as:

E@) = 37 [8(0) +8*(~0)] (x), (14
0@) = 57 1 [S(0) ~ 8" (~0)] (@)

leading to a new expression for the interferogram:

I(z) = E(z) cos(2m00z) — O(z) sin(2mooz). (15)

O(z) and E(z) are both functions with real values and
are odd and even respectively when the shifted spectrum
is real. The expressions of the envelope and the phase func-
tion are straightforward:

plz) = E*(x) + O*(), (16)
¢(z) = 2mopx + arctan (%) .

The phase function can be mathematically defined as long
as the envelope does not become zero. The problem of
properly unwrapping this function will be adressed in the
next section. An interesting property can be derived from
Eq. (16): the interfringe is constant in the interferogram
as long as the O function is a constant and is 0, which is
equivalent to saying that the shifted spectrum is an even
function. The expression of the phase function does not
depend on the choice of the wavenumber o(. This prop-
erty will be used in Sect. 4.2 and is demonstrated in the
appendix at the end of the paper.

4.1.3. Computation

As defined by Eq. (16), the phase function is not continous
as the arctan function is not continuous and returns val-
ues in the interval | — 7, Z[. The phase is first unwrapped
to eliminate discontinuities larger than 7. The function
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that is obtained is globally strictly increasing. Some dis-
continuities still remain that are not due to the arctan
function. They occur at each zero of the envelope when
its first dervative is not defined. The mathematical func-
tion then makes jumps of —m or +7. In reality these jumps
are not resolved when working with finitely sampled in-
terferograms. It is not possible to eliminate them: a pis-
toned phase function can reproduce a positive unresolved
leap. But a negative unresolved leap-like variation cannot
be due to piston as variations induced by piston are sup-
posed to be smaller than variations of the nominal opd.
To insure the final phase function to be monotonic, the
negative leaps are rectified. Numerically, when the neg-
ative leap has been detected, 27 is added to the phase
function after the leap, the leap itself is transformed into
a positive leap by a symmetry with respect to the tangent
before the leap. The error made on the phase function
after the symmetry is negligeable because the phase func-
tion is very close to a straight line when it is continuous
(the interfringe is almost constant). After these transfor-
mations, the computed phase function is monotonic but is
defined with a random additive constant proportional to
7. The value of this constant is fixed this way: the value of
the phase function must be in [—7, +7] around the white
light fringe.

4.2. Correction algorithm
4.2.1. Philosophy

The piston signal e(z) is a noise on the variable z, the opd.
The idea to correct pistoned inteferograms is to reduce
noise on the opd as statistical data reductions are usually
processed. The main difficulty is to express the opd as a
function of something, that is to say to invert Eq. (16) or
part of this equation. To do this it is necessary to find a
one-to-one function of opd. This function is the computed
phase function which will be thereafter mixed up with
the mathematical one, although they are quite different as
explained in Sect. 4.1.3. Let us note €,(z) the p realization
of a piston sequence. The corresponding interferogram,
envelope and phase function are indexed with p. From the
unicity property of the phase function and the envelope,
the expression of the pistoned interferogram is:

Ip(x) = pp(x) cos(dp(2)), (17)
with:

pp(@) = p(z + €p(z)), (18)
Pp(z) = o+ &(2)).

¢ = ¢p(x) is invertible as ¢y, is strictly increasing and so is
a one-to-one function. The opd as a function of the phase
function can be defined and is noted x,(¢). The reduced
opd function Z(¢) is the average of the realizations of the
pistoned opd functions. For an infinite number of realiza-
tions the reduced opd function converges to the nominal



G. Perrin: Correction of the “piston effect” in optical astronomical interferometry. I.

opd function. For N realizations of the piston the residual
piston in the reduced interferogram is thus reduced by a
factor N, the reduced inteferogram being eventually:

L.(z) = p®) cos(¢(Z)). (19)

4.2.2. Algorithm

For sake of clarity the correction algorithm is summarized
in Fig. 4 and the functions used in the reduction process
are plotted in Fig. 5. Let us assume that IV interferograms
have been recorded: {Z'}; — 1, ... n, each of length 27 cor-
responding to a fixed nominal opd window width Az or
spectral resolution do with Az . d0 = 1. The sampling
frequency is at least twice the higher spectral frequency
to obey the sampling theorem.

Computation of the phase functions Let us consider the
two-sided spectrum obtained by discrete Fourier trans-
forming the interferogram. The frequency samples are
(=271 + 1)do,...,0,...,(2° 1o where 2P '§o is the
Nyquist frequency. B(o) Vi%(o) is extracted from posi-
tive frequencies, B(—o) Via(—0o) from negative frequen-
cies and conjugated. The sum and the difference of the
two are computed. 27~2 — 1 and 2P~ 2 long zero sequences
are added before and after the two lists to produce the
S(o)+ S*(—o) and S(o) — S* (—o) functions of Sect. 4.1.2
with o9 = 2P"2§0 (half the Nyquist frequency). After in-
verse Fourier transform of these two, the phase function
is computed as explained in Sect. 4.1.3.

Inversion of the phase functions The previous step yields
N pistoned phase functions. They are all defined in
the same temporal window (corresponding to an opd
window width Az) but they do not vary in the same
range as the piston randomly shifts the interferograms
position in the window. For each realization ¢ of the
phase function, the maximum ¢! ,, and minimum ¢
of the function are computed. The common range of
variation of all the phase functions is determined to
be: [¢min7¢max]; where ¢min = max; =1, ..., N(ﬁbznin and
Omax = Min; — 1, .. N @}y Lhis is the maximum com-
mon range on which opd functions z%(¢) can be de-
fined. The phase functions are linearly interpolated on

{¢k> = ¢min + (%‘ifn—]n) k}k: =0, ..,2°P-1 PYOdUCing

a sampled opd function {xfﬁk = 2(¢k)}k =0, ..., 201
for each interferogram i (the index ¢ means that the
opd function definition is relative to the phase function

whereas the sampled inteferograms {I,i}k —o0,.. 2r_1 are
defined for the set of nominal opds {z = %(k —orl 4

D}k — o, .., 22—1). The error introduced by the linear in-
terpolation process is very negligeable because the pis-
toned phase functions have variations between two sam-
pling opds that are linear with a very good approximation
as long as the sampling frequency is chosen far greater
than the first cut-off frequency of piston.
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Computation of the reduced opd function The opd func-
tions are then reduced by processing:

N i

T
x(g,k:w, k=0,...,2° —1, (20)
yielding an estimation of the opd fluctuations for each
interferogram:
0 =agp—aly  k=0,..., 2 —1 (21)
The reduced set of opds width Az = Tp2r-1 — Tgo 1S
smaller than the nominal width Az which means the
spectral resolution has been decreased by the reduction

process.

Computation of the “unpistoned” interferograms The re-
sult of the three previous steps is the estimation of the
opd as a function of the nominal opd: @, = @4(x). The
reduced interferograms or unpistoned interferograms are
the following sets of samples:

{(fqg(xk),l,i)}k =0, .. 271,

where the @ (zy) are interpolated from the samples 3 .
These sequences are then interpolated to yield regularly
sampled interferograms.

(22)

4.8. An example of correction

The correction algorithm that has just been presented is
used to reduce simulated pistoned interferograms. The
source has a 3500 K blackbody spectrum and it is seen
through a K filter. It is unresolved with a constant visi-
bility modulus of one and with a constant visibility equal
to zero. Most of the energy is in the range o = 4000
to 5000cm~!. The number of samples is 1024 and the
parameters are those listed in Table 1. The length of
the sequences and the spectral resolution are the same
as in Sect. 3.6. 100 interferograms have been simulated.
Figure 6 shows the result of the reduction. The left view
of Fig. 6 is the corrected interferogram. The spectrum of
the corrected interferogram (full line), the original spec-
trum (square dots), and the spectrum of the pistoned in-
terferogram (dashed line) are on the right view. In Fig. 7
are plotted one of the simulated piston sequences (dashed
line) and the approximation of the error signal (full line)
as a result of the reduction process. See Sect. 5 for com-
ments.

4.4. Influence of noises on the correction of the
interferorams

4.4.1. Multiplicative noise

The expression of the interferogram given in Eq. (2) re-
quires to assume that the intensity in the two arms does
not fluctuate. This situation prevails when using single
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Fig. 6. Corrected interferogram and spectrum for an infinite
Top view: corrected interferogram. Bottom view: spec-
of the corrected interferogram (full line), original spec-

S/N.

trum
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mode fibers (Coudé du Foresto & Ridgway 1991; Coudé du
Foresto et al. 1992) because all coherent photons injected
in fibers do interfer and because fibers allow to momitor
the fluctuations of photometry in the two arms. The pho-
tometric fluctuations are corrected during data reduction
and interferograms are renormalized. These variations are
low frequency variations (usually of the order of 100 Hz)
and the interferograms can be scanned at higher frequen-
cies allowing for a correct filtering to remove these varia-
tions if fiber optics are not used. Yet, the visivility transfer
function is allowed to vary with time as long as the varia-
tions are achromatic. This then only changes the amount
of modulated energy but it does not change the phase
function. In other words, Eq. (2) can be supposed reliable
for the correction algorithm.

4.4.2. Additive noise

The correction simulation of the previous section was car-
ried out assuming an infinite signal-to-noise ratio. The
S/N ratio is defined as in Brault (1985): assuming a white
noise with rms fluctuations €, in the temporal domain, the
S/N ratio is the ratio of the white fringe amplitude and €,:

S/N = @. The local S/N ratio is thus rapidly decreas-
ing in the interferogram with distance to the white light
fringe. For the spectrum simulated in this paper, the S/N
ratio at the top of the first side lobes is only 15% of the
Brault signal-to-noise ratio. Figure 8 shows the modulus
of the spectrum after correction of 100 interferograms with
S/N = 100. After correction of piston, spectra have been
averaged to reduce the additive noise. The spectrum cor-
rection quality is very degraded because the phase func-
tion computed for a local S/N ratio less than 1 is not
reliable. Besides, the phase function is very sensitive in
the zones where the envelope of the interferogram is zero.
As a matter of fact the sign of the interferogram can ran-
domly change there producing random 7 phase shifts. The
more random phase shifts the more different phase func-
tions from one interferogram to the other. Although the
main lobe is corrected with a good quality, additive noise
is a disaster to correct other lobes when the S/N ratio
is not very high, hence the great difference between the
corrected spectrum and the original brightness density.
Nevertheless, the correction can be improved. The inter-
ferometer has two outputs which are theoretically comple-
mentary because the input energy is conserved. The de-
tection of the complementary interferogram can be done
differently to use it as a correction interferogram. The use
of a narrower K filter for the second output will increase
the coherence length of the beams, thus widening the en-
velope of the second interferogram, and will take the first
side lobes away, the first lobe width being proportionnal to
the inverse of the spectrum width. Assuming the amount
of noise is the same in the two arms of the interferome-
ter, the S/N ratio for the narrow filter interferogram is
the S/N ratio times the ratio of collected energy through
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the K and narrow K filters. The spectrum seen through
the narrow K filter with a 25cm™! spectral resolution is
shown in Fig. 9. The S/N ratio for the narrow band inter-
ferogram is approximately degraded by a factor of 5 with
respect to the S/N ratio for the regular K filter inter-
ferogram. Series of 100 simulated pistoned interferograms
have been corrected and averaged for S/N ratios of 100,
50 and 20. The resulting spectra are presented in Fig. 10.
It is to be noticed that if filters of adjustable width are
available then it is possible to adapt the width of the nar-
row filter to optimize the final spectral resolution. As a
matter of fact, for large S/N ratios in wide band the width
of the narrow band can be chosen so that the S/N ratio of
the narrow band signal is for example 20 (or larger). The
width of the narrow filter is then SQ/—ON times smaller than
that of the wide filter and the resolution of the wide band
spectrum is increased by the same factor. If the method is
systematically applied then the final resolution is inversely
proportional to the S/N ratio of the wide band signal.

4.4.3. Unknown absolute optical path difference

The reduction algorithm has to be adapted when a com-
mon origin independent of the interferograms is not known
with a precision better than one tenth of a wavelength. A
common origin is required for all interferograms to define
the position functions. It is very convenient to set the posi-
tion where the phase function is zero as the origin because
it can be very accurately determined. The same algorithm
can then be applied, the only difference being that the vis-
ibility phase is determined to within a constant and does
not allow image reconstruction. Accurate phase recovery
will be adressed in another paper.

4.5. Irregularly sampled corrected spectra computation

The correction algorithm of Sect. 4.2.2 has led to the ir-
regularly sampled interferograms of Formula (22). The
derivation of spectral information from these sequences
is not straightforward. The usual way is to interpolate the
irregularly sampled sequences at regularly spaced opds to
get regular samples and compute their discrete Fourier
transform. The interpolating process introduces an ex-
tra noise all the more important as the sampling fre-
quency is lower. This numerical noise can be reduced
by oversampling the original sequences to get better es-
timates when interpolating. The corrected low resolu-
tion spectra presented in this paper were obtained us-
ing this method. The method fails when high resolution
information is mandatory. Oversampling would increase
the number of samples without increasing resolution, and
very long sequences cannot be oversampled indefinitely.
Besides, the residual noise would destroy part of the high
resolution information. A method overcoming interpola-
tion drawbacks is necessary. An algorithm has been de-
velopped by Feichtinger et al. (1994) to compute spectra
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from non-uniform samples. The algorithm is iterative and
thus slower than the Fast Fourier Transform algorithm.
25 iterations, which is roughly 107 floating point opera-
tions, are needed to reconstruct the spectrum from 2300
samples with a high accuracy (the normalized error is less
than 10713). The time required by the restoration algo-
rithm increases with the size of the gaps in the samples.
The number of iterations would thus increase with the
strength of piston.

5. Results

5.1. Reduction of interferograms with an infinite S/N
ratio

From the corrected spectrum and interferogram calculated
in Sect. 4.3 and presented in Fig. 6, the modulus and the
phase of the complex visibility are computed in the range
4000 — 5000 cm~! (Fig. 11). The average measured visibil-
ity is 1.006 with a standard deviation of 1.3% (Table 2).
The phase is almost perfectly zero, the error being less
than 0.01 rad. The oscillations in the visibility modu-
lus account for most of the noise. The closer the edges
of the spectrum, the bigger the oscillations. The phase is
left unaffected by these oscillations. This is the Gibbs phe-
nomenon (Bracewell 1986). As shown in Fig. 7 the injected
error signal is well reconstructed by the reduction process
on more than 100 um on each side around the zero opd
position. The difference between the injected error sig-
nal and the correction process output error signal is, as
expected, of the order of % rms. It is a smooth and coher-
ent noise which explains the good reconstruction of the
spectrum. A fast varying noise with the same rms fluctua-
tions would produce a spectrum with few similarities with
the original one. Before —108 ym and after 107 ym the re-
constructed piston signal is shifted by 1 A (or the phase
function is shifted by ) with respect to the signal recon-
structed in the interval [—100,+100]. The interpolations
necessary to compute the interferograms with fluctuating
opds generate errors in the interferograms that are simi-
lar to a noise. The m-leap in the output piston is due to
this noise. As a consequence, although the reduced inter-
ferogram is defined on a width Az ~ 360 um, the actual
spectral resolution is determined by a width Az ~ 200 um
and is do ~ 50 cm L. It is possible to increase spectral res-
olution with an infinite S/N ratio if the method explained
at the end of Sect. 4.4.2 is extrapolated. The width of the
narrow band interferogram is the reverse of the bandwidth
and the resolution of the reconstructed wide band spec-
trum is then of the order of the bandwidth of the narrow
band spectrum.

5.2. Reduction of interferograms with finite S/N ratios

More realistic simulations are necessary to determine how
good the correction can be when data are noisy and what
should be expected with this method. Three S/N ratios
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Table 2. Reduction results

S/N 40 100 50 20
|4 1.006 1.021 1.044 1.153
ov 0.013 0.045 0.047 0.424

have been simulated: 100, 50, 20. The spectrum displayed
in Fig. 8, which is the result of the reduction and sum-
mation of 100 interferograms with S/N = 100, shows the
limits of the method in its basic use. For such a S/N ratio
the spectrum reconstruction starts to be of poor quality
and the inferred visibility function gets less and less re-
liable. Spectra obtained with the narrower filter method
of Sect. 4.4.2 and displayed in Fig. 10 lead to the visi-
bility functions moduli and phases of Fig. 12. As for the
case of the infinite S/N ratio, the Gibbs phenomenon is
visible. Spectral fluctuations frequencies decrease with de-
creasing S/N ratios indicating that spectral resolution is
also decreasing, and fluctuations amplitudes increase with
noise. The statistics of the moduli of the measured visibil-
ity functions are presented in Table 2. Visibility functions
are measured with a quite good accuracy for S/N ratios
of 100 and 50 with average precisions of 2.1% and 4.4%
respectively. Because of the Gibbs phenomenon, local er-
rors can be larger than 10% on the edge of the spectrum.
For S/N = 20 the correction algorithm fails to recon-
struct workable visibility moduli. As far as phases are con-
cerned, the reconstruction is easier. The maximum error
is 0.01rad for S/N = 100 and 50 and it reaches 0.02rad
for S/N = 20.

5.3. Concluding remarks

From these results a few conclusions can be drawn on what
can be expected from the piston reduction process. First,

in the simulations the fringes were scanned at 5 mm s~!

corresponding to a fringe frequency of 2274 Hz at 2.2 um.
For a scan length of 400 um it has been shown that the
standard deviation of piston is 10.5 um for average atmo-
spherical conditions on the IOTA interferometer and for
this fringe speed. Each set of simulated data is a record of
100 interferograms. After reduction the strength of piston
is thus attenuated by a factor of 10 and the standard devi-
ation of optical path fluctuations is % at 2.2 um. The good
quality of the correction obtained with the proposed algo-
rithm in realistic conditions of observation shows that it
is workable for real observations. Second, very good S/N
ratios are necessary if visibility measurements with preci-
sions better than 5% are required. It turns out that the
maximum level of noise that makes this goal achievable
corresponds to a S/N ratio close to 50. Third, this method
necessarily degrades the initial spectral resolution. After
correction, the estimated resolution for an infinite S/N
ratio is about 50 cm~! and is of the order of 100cm~? or
more for S/N ratios of 100 and 50. These resolutions are
poor relative to the resolutions needed for a fruitful anal-
ysis of CO lines in the K band for example. Nevertheless,
although it is theoretically possible to indefinitely increase
spectral resolution in the case of an infinite S/N ratio as
explained in Sect. 5.1, with these resolutions it is possi-
ble to derive gradients and higher order terms from the
computed visibilities that should contain interesting in-
formations.

6. Conclusion

Interferometric measurements of fundamental parameters
of stars are common applications of astronomical interfer-
ometers in the optical range. What is measured is the aver-
age value of parameters across a spectral band. Knowledge
of the dependence of these parameters with wavelength
would be precious and would bring rich informations on
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the physical conditions of the sources. A fundamental limi-
tation to achieve this goal is the atmospheric phenomenon
of optical path fluctuations or piston effect. It has been
shown that the method presented in this paper allows to
recover the visibility function with a low spectral resolu-
tion. Visibility moduli are reconstructed with a precision
that can be as good as a few percent between 2 and 2.5 ym
for S/N ratios greater than 50. Visibility phase gradients
are also very well extracted from the simulated data with
errors that are less than 0.01rad.

This reduction algorithm for correction of piston fails to
recover the true phase of visibilities. This is not prejudi-
cial to the spectral analysis of visibilities. A complement
to this algorithm is needed if one wants to remove atmo-
spheric phase errors from interferometric data to achieve
high resolution imaging and will be presented in a forth-
coming paper.

Appendix A

Supposing a piston sequence of duration 7. Let us define
the standard deviation of piston during that sequence:

1 [tz )
o) =\ [ -9 at (23)
TJg
where € is the average value of piston:
+3
=5/, (24
Let us consider the T-periodic function:
Y(t) = [e(t) . Tr(t)] x Ll (8), (25)

where II7 and LLI; are, respectively, the window function
of width T and the Dirac comb with spacing T'. Then, ~
equals € on the interval [— %, —l—%] and the moving average:

t+1
a(t) = %/t . ~(z)dz

(26)

is a constant equal to € by definition of . Besides, the
moving average acts as a low pass filter with transfer func-

tion % on . It is thus straightforward to derive the
spectrum of the periodic function I'(t) = (t) —a(t) which
matches €(t) — €on [—L,+L]:
sin(rwT") .

T = - 7. 2

@ = (1- 25 ) (27)
with:
< . sin(mwT)

= L 28

) = a0« D L) (29)
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I has discrete values with spacing + and I'(0) = 0. Hence,
for w # 0:

n=+4oo .
SN B sin(nwT) | /n n
F(w) = n;oo [e(w) « T ] (%) -dw=-7) (29
and the spectrum is zero except for harmonics:

oo n sin(rwT)

Computing the standard deviation for a piston sequence
of duration 7" thus amounts to computing the standard de-
viation of the periodic function I which is the square root
of the infinite sum of the squared harmonics. Eventually:

Appendix B

For two wavenumbers o, and o3 I define the corresponding
envelopes p; and py, the phase functions ¢; and ¢,, the
shifted spectra 51 and Ss, the odd and even functions O;
and Oz, E; and FE». By definition, there is a simple relation
between S and Ss:

52(0)251(0+02—01). (32)
Let us derive the expression of Es:
Fa(@) = 57 [Sa(0) + S3(=0)) (@) (33)

= SF M [Sio+ 02— o) + Si(—0 + 02— 1)) (@)

2
= 3F SO @
]. _ * —2im(oc1—092)x
HSi(—0)] (z)e 2l
= Ei(z)cos(2m(o1 — 02)z) — O1(z) sin(2w (o1 — 02)x).
In the same way it can be shown that:
02 (w) =

As a consequence, it is obvious that the envelopes are the

same:
=/E(z =/E(z = pa(x).

Let us show that the two calculi lead to the same phase

O1(z) cos(2m(o1—02)z)+ E1(z) sin(2n(01—02)x).(34)

)+ O%(z )+ O2(z (35)

function:
¢2(x) = 2mwo2x + arctan <g§ Eg) (36)
271"0236 +
) cos(2m(01 — 02)z) + Er(z)sin(2w (o1 — 02)x)
arctan ( )cos(2m (o1 — o2)x) — O1(z) sin(2mw (o1 — Uz)w)>

% + tan(27 (01 — 02)x)
= 2mosx + arctan Oz
J—lEl(w) tan(2m(o1 — 02)x)
= 2moax + arctan (tan [¢1(z) — 2012 + 27(01 — 02)7])
= ¢1(z).
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The previous lines thus demonstrate that the envelope
and the phase function do not depend on the choice of
the shifting wavenumber. The derivation is still valid with
o0 = 0. In this case Z(z) = E(z) and:

p(x) = E*(z) + 0% (), (37)
_ O(z)

¢(z) = arctan <E(r)> .
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