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Abstract. A method is given for extracting object visi-
bilities from data provided by a long baseline interferome-
ter, where the beams are spatially filtered by single-mode
fibers and interferograms are obtained as scans around
the zero optical pathlength difference. It is shown how the
signals can be corrected from the wavefront perturbations
caused by atmospheric turbulence. If the piston pertur-
bations are also removed, then the corrected data con-
tain both spatial and spectral information on the source
(double Fourier interferometry). When the piston cannot
be removed, object phase and spectral information are
lost, and the observable (free of detector noise bias) is the
squared modulus of the coherence factor, integrated over
the optical bandpass. In a fiber interferometer this quan-
tity leads to very accurate object visibility measurements
because the transfer function does not involve an atmo-
spheric term. The analysis also holds for a more classical
pupil plane interferometer which does not take advantage
of the spatial filtering capability of single-mode fibers. In
that case however, the transfer function includes a tur-
bulence term that needs to be calibrated by statistical
methods.

Key words: instrumentation: interferometers —
methods: data analysis — atmospheric effects — infrared:
general — techniques: interferometry

1. Introduction

Amplitude interferometry is a unique tool to observe as-
tronomical sources with an angular resolution well beyond
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the diffraction limit of monolithic telescopes. The basic
Michelson stellar interferometer measures the coherence
factor1 µ between two independent pupils, which is linked
to the Fourier component of the object intensity distri-
bution (or object visibility V) at the spatial frequency
corresponding to the baseline formed by the pupils.

One of the main challenges of Michelson stellar inter-
ferometry at optical and infrared wavelengths is the cali-
bration of coherence factor measurements. The fringe vis-
ibility differs from the object visibility because the instru-
ment and the atmosphere have their own interferometric
efficiencies which result in an instrumental transfer func-
tion Ti, and an atmospheric transfer function Ta:

µ = Ti Ta V. (1)

Thus an accurate knowledge of both transfer functions
is required to obtain a good estimate of V. A well-designed
interferometer is usually stable enough so that the cali-
bration of Ti is not a major issue. But the interferometric
efficiency of the atmosphere, which is affected by the loss
of coherence caused by phase corrugations on each pupil,
depends on the instantaneous state of the turbulent wave-
fronts. Thus Ta is a random variable, whose statistics is
linked to the evolution of the seeing and is not even sta-
tionary. In a classical interferometer there is no way to di-
rectly calibrate Ta (short of sensing at all times the com-
plete shape of the corrugated wavefronts) and the only
option is a delicate, statistical calibration on a series of
measurements. Then obtaining object visibilities with a
relative accuracy of 10% or better is difficult to achieve;
yet such a performance is insufficient for many astrophys-
ical problems.

This difficulty can be overcome by using single-mode
fibers to spatially filter the incoming beams. In single-
mode fibers the normalized radiation profile is determined

1 As far as coherence is concerned, this paper follows the
terminology and notations of Goodman (1985). However the
term “fringe visibility” will sometimes be used as a synonym
for coherence factor.
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by the waveguide physical properties (Neumann 1988),
not by the input wavefront, and the phase is constant
across the guided beam. On the other hand, the intensity
of the guided radiation depends on the electromagnetic
field amplitude distribution in the focal plane of the tele-
scope and may vary with time if the image is turbulent.
Thus single-mode fibers force the transverse coherence of
the radiation and transform wavefront phase corrugations
into intensity fluctuations of the light coupled into the
fibers. Unlike wavefront perturbations however, intensity
fluctuations can easily be monitored and used during the
data reduction process to correct each interferogram indi-
vidually against the effects of atmospheric turbulence.

The correction capability was first demonstrated in
a fiber unit set up between the two auxiliary tele-
scopes of the McMath-Pierce solar tower on Kitt Peak
Observatory, which transformed the telescope pair into a
stellar interferometer (Coudé du Foresto et al. 1991). The
prototype instrument (named FLUOR for Fiber Linked
Unit for Optical Recombination) observed a dozen stars
with statistical errors smaller than 1% on the object vis-
ibilities. The same fiber unit is now routinely used as
part of the instrumentation in the IOTA (Infrared and
Optical Telescope Array) interferometer at the Fred
Lawrence Whipple Observatory on Mt Hopkins (Carleton
et al. 1994). Some of the results obtained with FLUOR on
IOTA can be found in Perrin et al. (1997).

This paper presents the specific data reduction pro-
cedure used to extract visibility measurements from the
raw interferograms obtained with FLUOR. The procedure
can also be applied (with minor modifications that are
explained in Sect. 9) even if the interferometer does not
involve fiber optics. In that case, however, the spatial fil-
tering advantage is lost.

The organization of the paper is as follows: in Sect. 2 is
briefly described the conceptual design of a FLUOR-type
interferometer, and the principle of interferogram correc-
tion is shown on a simple example.

Before we can derive the full analytical expression of a
wide band interferogram (Sect. 5), we need to specify two
important preliminary assumptions (Sect. 3) and to un-
derstand the photometric behavior of the system (Sect. 4),
i.e. the proportionality relationships that link the diverse
outputs when light is incoherently recombined. Section 4
is specific to the use of a triple fiber coupler and can be
skipped in a first reading. From the expression of a raw
interferogram, obtained in Sect. 5, can be derived an ex-
pression for the corrected interferogram, which itself leads
to an expression for the squared modulus of the wide band
fringe visibility (Sect. 6). Real data are affected by noise:
estimation strategies and noise sources are discussed in
Sect. 7. Finally, some practical considerations are devel-
oped in Sect. 8 and a generalization to non-fiber interfer-
ometers is proposed in Sect. 9.

Throughout the paper, the data reduction procedure
will be illustrated with examples from actual data. They

were obtained on αBoo (Arcturus) with the original
FLUOR unit set up between the two 0.8m telescopes
(separated by 5.5m) of the McMath-Pierce tower (Coudé
du Foresto et al. 1991). The unit included fluoride glass
fibers and couplers, four InSb photometers, and was op-
erated in the infrared K band (2µm ≤ λ ≤ 2.4µm). The
telescopes had entirely passive optics, without even active
guiding (tip-tilt correction). The sample data is a batch
of 122 interferograms recorded on 7 April 1992 between
7h19 and 8h04 UT, in mediocre seeing conditions (more
than 1.5 arcsec).

2. Principles of a fiber interferometer

It is beyond the scope of this paper to describe the de-
tails of a fiber interferometer. This has been done else-
where (Coudé du Foresto 1994). What is shown here is
only a conceptual description of a FLUOR-type instru-
ment (Fig. 1) and the principles of operation.
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Fig. 1. Conceptual design of a stellar fiber interferometer

Two different pupils independently collect the radia-
tion from an astronomical source, and each telescope fo-
cuses the light onto the input head of a single-mode optical
fiber.
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The observed object is considered as unresolved by a
single pupil and its spectral intensity distribution at the
focus of the telescopes is B0B(σ), with B(σ) normalized
so that∫ +∞

0

B(σ) dσ = 1. (2)

Starlight injection into the waveguide occurs as the fo-
cal electric field Efocus excites the fundamental mode of
the fiber Efiber. The instantaneous coupling efficiency ρ
is determined by the overlap integral between the distri-
bution of the electric fields in the focal plane and in the
guided mode (Shaklan & Roddier 1988):

ρ =

∣∣∣∫A∞ Efocus E
∗
fiber dA

∣∣∣2∫
A∞
|Efocus|2 dA

∫
A∞
|Efiber|2 dA

, (3)

where the integration domain extends at infinity in a
transverse plane and the symbol ∗ denotes a complex con-
jugate.

The radiation is then guided by the fiber down to the
recombination point, where correlation between the two
beams occurs in a single-mode directional coupler (X).
The two complementary outputs of the coupler are mea-
sured by photometers which produce the interferometric
signals I1 and I2. Two auxiliary couplers Y1 and Y2 derive
part of the light at each telescope so that the coupling
fluctuations can be monitored by the photometers which
produce the photometric signals P1 and P2.

With a delay line, the observer has the capacity to con-
trol the overall optical pathlength difference (OPD) from
the source to the recombination point. During data ac-
quisition, the OPD is scanned around the zero pathlength
difference. The nominal scanning speed v is the algebraic
sum of the internal OPD modulation introduced by the
delay line and the external OPD modulation due to diur-
nal motion.

Thus a complete data set for a single interferogram
contains the collection of four signals I1, I2, P1 and P2,
sampled and digitized during a scan. It also includes the
background current sequences for each photometer (the
sum of the dark current and the background signal), which
are preferably acquired just after each scan. It is assumed
in what follows that the electrical offsets have been ad-
justed in such a way that the average value of all back-
ground currents is zero. To reduce statistical errors on the
results, a batch of a few tens to a few hundred interfer-
ograms is recorded for a given source and instrumental
configuration.

A simple example, using a monochromatic source at
wave number σ, will help us understand how fiber inter-
ferograms can be corrected from the turbulence induced
coupling fluctuations. Neglecting transmission and pro-
portionality factors that are detailed in Sect. 4, the ex-
pression of a generic interferogram I is

I(x) = P1(x)+P2(x)+2
√
P1(x)P2(x) µ cos(2πσx+Φ),(4)

where µ is the modulus of the complex coherence factor,
x the optical path difference, and Φ a phase term. From
this and with the knowledge of P1 and P2, it is easy to
build the corrected interferogram whose modulated part
is:

Icor(x) =
I(x)− P1(x)− P2(x)

2
√
P1(x)P2(x)

(5)

= µ cos(2πσx+ Φ).

The quantity 1+Icor is the normalized interferogram that
would have been observed if there had been no atmo-
spheric turbulence, i.e. if P1 and P2 had been equal and
constant.

In Sect. 5 is established a more rigorous expression of
the interferogram for a monochromatic and for a wide
band source.

3. Preliminary assumptions

Two important assumptions have to be made before we
go any further. Those conditions are not necessarily fully
satisfied, but they are required if one wants to develop an
analytical expression of the interferogram.

3.1. Absence of differential piston

In a modal description of atmospheric turbulence, the pis-
ton corresponds to the most fundamental perturbation,
i.e. the fluctuations of the average phase of the corrugated
wavefront. The piston mode on a single pupil does not
modify the state of coherence of that pupil and therefore,
does affect neither the image quality nor the coupling ef-
ficiency into a single-mode fiber. The differential piston
between two independent pupils, however, is equivalent to
the addition of a small random delay in the OPD.

Recently, Perrin (1997) proposed a numerical method
to remove the differential piston after data acquisition.
The piston can also be eliminated in the instrument be-
fore data acquisition if the pupils are cophased with a
fringe tracker, as it is the case for example in the Mark III
interferometer (Shao et al. 1988). A fringe tracker based
on guided optics has already been proposed (Rohloff &
Leinert 1991). Cophasing the pupils offers the additional
advantage to considerably improve the sensitivity because
integration times can in principle be arbitrarily long (Mar-
iotti 1993), but it requires to build a dedicated active sys-
tem.

Without piston, the OPD variation is uniform. The
signals are recorded as time sequences, but if we assume
that the fringe speed v is constant during a scan there is a
direct linear relationship between the time variable t and
the position variable (the global OPD) x. The signals are
sampled at equal time intervals δt, which correspond to
equal length intervals δx = v δt.

When taking the Fourier transform of the signals, the
conjugate variable with respect to position x is the wave
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number σ, and the frequency f = vσ is the conjugate vari-
able for the temporal sequences. It is important to keep
this duality in mind in order to be able to reason alterna-
tively in terms of time/frequency or position/wave num-
ber. Actually, in this paper either one or the other vari-
able pair is used depending on the needs, and the variable
change that it sometimes implies shall be implicit.

3.2. Chromaticism of the starlight injection

Usually the starlight injection efficiency ρ is both a func-
tion of time t and of wave number σ, since the structures of
both Efiber and Efocus depend on wavelength, and Efocus is
determined by the instantaneous state of the atmospheric
turbulence. For what follows it is necessary to assume that
the time and wave number variables can be separated in
the coupling efficiency coefficient, so that we can write

ρ(t, σ) = ρt(t) ρσ(σ). (6)

A heuristic justification is given here. For a diffrac-
tion limited image, the electric field morphology at the
focus of the telescope depends on wavelength λ only
through a scaling factor. Within the practical range of
optical frequencies at which a single-mode fiber can be
operated, the fundamental mode can be approximated
by a Gaussian function whose width is proportional to
λ (Neumann 1988). Thus the two fields change homoth-
etically with respect to wavelength, and the overlap in-
tegral (Eq. 3) remains almost unchanged. It follows that
the injection efficiency is quasi achromatic for a diffraction
limited image.

Things are different for a stellar source, but if we as-
sume that the turbulence is weak (d/r0 ≤ 4, where d
is the diameter of the pupil and r0 the Fried parame-
ter (Fried 1966)), tip-tilt modes dominate the atmospheric
turbulence (Noll 1976) and the image of the star can be
modeled by a unique speckle randomly walking around its
nominal position. The speckle offset with respect to the
fiber core is a function of time exclusively, whereas the
sensitivity of ρ to that offset depends on the color only.
It is thus reasonable to assume that the time and wave
number variables can be separated.

4. Photometric properties of the system

The aim of this section is to determine, when photometric
intensities P1 and P2 are recorded at the outputs of the
Y couplers, what are the actual intensities of the beams
that are being correlated in the X coupler. We need to
establish what proportionality factors link the outputs of
the interferometric X coupler and the outputs of the pho-
tometric Y couplers. So for this section it is assumed that
the recombination is fully incoherent.

4.1. Monochromatic signals

The monochromatic signal produced at any given time by
the photometric detector Pj (j = 1 or 2) is proportional
to its overall gain gPj and to the transmission tPj of the
coupler Yj towards the output Pj :

Pσ,j = gPj(σ) [tPj(σ)B0B(σ) ρt,jρσ,j(σ)] . (7)

For what follows it is convenient to introduce the global
efficiency ηPj of the photometric channel Pj:

ηPj(σ) = gPj tPj ρσ,j , (8)

which leads to

Pσ,j = B0B(σ) ηPj(σ) ρt,j . (9)

The signal provided by the interferometric detectors
I1 and I2 is proportional to the optical powers E2

1 and E2
2

at the output of the X coupler, and to the gain of the
photometers:

Iσ,1 = gI1(σ)E2
1 (10)

Iσ,2 = gI2(σ)E2
2 .

Optical powers at the inputs and outputs of X are
linked by a transmission matrix:(
E2

1

E2
2

)
=

(
tX11 tX12

tX21 tX22

)(
tY1B0B(σ) ρt,1ρσ,1(σ)
tY2B0B(σ) ρt,2ρσ,2(σ)

)
, (11)

where tYj is the transmission of the coupler Yj towards the
X coupler, and tXij is the transmission of the X coupler
from input (telescope) j towards output i.

Here it should be noted that, since most fiber cou-
plers are chromatic (and because of aging processes, their
chromaticism can evolve over the years), the coefficients
tXij and tYj are σ-dependent and cannot be known with
a sufficient accuracy. There is also no way to access the
raw coupling efficiencies. Thus the only matrix that can
actually be measured links the photometric signals to the
interferometric signals:(
Iσ,1
Iσ,2

)
=

(
κ11(σ) κ12(σ)
κ21(σ) κ22(σ)

)(
Pσ,1
Pσ,2

)
. (12)

Combining the relations 7, 11 and 12 leads to

κij(σ) =
gIi

gPj

tXij tYj

tPj
. (13)

4.2. Wide band signals

The wide band photometric relationships are obtained by
integration over σ. For the Pj detectors:

Pj =

∫ +∞

0

Pσ,j(σ) dσ (14)

= B0 ρt,j

∫ +∞

0

B(σ) ηPj(σ) dσ.
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From this follows:

B0 ρt,j =
Pj
ηPj

, (15)

where

ηPj =

∫ +∞

0

B(σ) ηPj(σ) dσ (16)

is the global wide band efficiency of the photometric chan-
nel Pj .

According to Eq. (12), the monochromatic signal Iσ,i
provided by detector Ii is linked to Pσ,1 and Pσ,2 by

Iσ,i(σ) = κi1(σ)Pσ,1 + κi2(σ)Pσ,2 (17)

= κi1(σ)B0B(σ) ηP1(σ) ρt,1

+κi2(σ)B0B(σ) ηP2(σ) ρt,2

and an integration yields

Ii =
∑
j=1,2

B0 ρt,j

∫ +∞

0

κij(σ) ηPj(σ)B(σ) dσ (18)

=
∑
j=1,2

Pj
ηPj

∫ +∞

0

κij(σ) ηPj(σ)B(σ) dσ.

Thus a linear relationship links the two wide band signal
pairs:(
I1
I2

)
=

(
κ11 κ12

κ21 κ22

)(
P1

P2

)
, (19)

with:

κij =
1

ηPj

∫ +∞

0

κij(σ) ηPj(σ)B(σ) dσ. (20)
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Fig. 2. The κ11 (+) and κ12 (×) coefficients, as measured on
αBoo (Arcturus) in a batch of 122 scans

The main interest of the (κij) transfer matrix is that it
can be evaluated directly from the data, without requiring
an a priori knowledge of the individual transmissions and

gains in the system. The evaluation is performed by ad-
justing a least square fit of a linear combination of P1 and
P2 to I1 for the κ1j, and to I2 for the κ2j. Figure 2 shows
an example of a series of measurements of κ11 and κ12.
In order to reduce statistical errors, for each κij all mea-
surements in a batch are averaged to produce the value
adopted for the rest of the data reduction procedure.

5. Coherent recombination

For data reduction both interferometric signals are pro-
cessed independently. We shall consider only one of them,
which will help us simplify the notations as we can then
drop index i. Thus for example, when the recombination
is incoherent the wide band interferometric signal can be
expressed as

I = κ1 P1 + κ2 P2, (21)

where the κj are the proportionality factors detailed in
Sect. 4.

To establish an expression of the intensity after coher-
ent recombination in the X coupler, we first describe the
monochromatic interferogram at wave number σ; the wide
band interferogram will then be obtained by integration
over the optical bandpass of the system.

5.1. Monochromatic interferogram

At the recombination point in the correlator the com-
plex representations of the electric fields of the two guided
beams have the general expression:

E1(t) = E1 ej(φ1−ωt) (22)

and

E2(t) = E2 ej(φ2−ωt), (23)

where ω = 2πcσ is the angular pulsation and φi the phase
accumulated from the source to the recombination point
through channel i. The correlator sums the instantaneous
amplitudes of the electric fields and the instantaneous am-
plitude at its output is:

E(t) = E1(t) + E2(t) (24)

= E1 ej(φ1−ωt) +E2 ej(φ2−ωt).

What is measured by the observer is a quantity propor-
tional to the average (over a period much greater than the
coherence time of the radiation) of the squared modulus
of the amplitude:

Iσ = gI [〈E(t)E∗(t)〉] (25)

= gI

[
E2

1 +E2
2 + 2 〈E1(t)E

∗
2(t)〉

]
= gI

[
E2

1 +E2
2 + 2E1E2 Re{γ12}

]
.

The quantity γ12 is the complex degree of coherence
(Goodman 1985) between the signals collected by each
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fiber. Here because the source is by definition monochro-
matic (with an optical frequency ν and a wave number σ),
the complex degree of coherence takes the simplified form
of an oscillating function of the delay τ between the two
waves:

γ12 = µ12 e−j2πντ (26)

= µ12 e−j2πσx,

where µ12 = µ12 ejΦ12 is the complex coherence factor be-
tween the two beams at the recombination point. It is the

product of the complex object visibility V
(?)
12 = V

(?)
12 ejΦ

(?)
12

at the input (the entrance pupils) of the interferometer by
an instrumental transfer function Ti = Ti e

jΦi:

µ12 = Ti V
(?)
12 . (27)

According to the Van Cittert-Zernike theorem (Born &

Wolf 1980; Goodman 1985), the quantity V
(?)
12 is also the

monochromatic complex visibility of the object at the spa-
tial frequency corresponding to the interferometric base-
line vector. The modulation transfer function Ti of the in-
strument expresses mainly the frequency response of the
detectors and a coherence loss due to polarization mis-
match in both radiations. The phase term Φi includes
dispersion in the guided optics components (Coudé du
Foresto et al. 1995), and possible differential phase jumps
when reflecting on telescope mirrors.

It should be emphasized that the transfer function, as
defined here, is purely instrumental and does not involve
atmospheric turbulence. Assuming that the instrument is
stable enough, the impulse response of the system can be
calibrated on a reference object whose complex visibility

V
(ref)
12 is well known (it can be for example an unresolved

point source for which V
(ref)
12 = 1). If µ

(ref)
12 is the complex

coherence factor measured on the reference, the instru-
mental transfer function is

Ti =
µ

(ref)
12

V
(ref)
12

. (28)

The modulus and phase of the Fourier transform of the
object are then given by

V
(?)
12 = µ12/Ti (29)

Φ
(?)
12 = Φ12 − Φi.

Let us now return to the general expression of the in-
terferogram (Eq. 25), which can be rewritten, with rela-
tion 26 in mind,

Iσ = gIE
2
1 + gIE

2
2 (30)

+2gIE1E2µ12(σ) cos(2πσx+ Φ12(σ)).

Thanks to the results of the previous section (Eqs. 9, 12
and 15), we can relate the squared monochromatic ampli-
tudes of the fields, which cannot be accessed directly, to

the photometric signals P1 and P2 which are measurable
quantities:

gIE
2
j = κj(σ)Pσ,j (31)

= κj(σ)B0B(σ) ηPj(σ) ρt

= κj(σ)
Pj

ηPj

B(σ) ηPj(σ).

Defining P =
√
P1P2 and κ =

√
κ1κ2, we have for the

cross term:

gIE1E2 = P B(σ)κ(σ)

√
ηP1(σ)ηP2(σ)
√
ηP1ηP2

(32)

= P B(σ)κ′(σ).

Since the photometric signals P1 and P2 vary with time
(i.e., with the OPD x), the monochromatic interferogram
can be written as:

Iσ(x) = κ1(σ)
P1(x)

ηP1

B(σ)ηP1(σ) (33)

+κ2(σ)
P2(x)

ηP2

B(σ)ηP2(σ)

+2P (x)B(σ)κ′(σ)µ12(σ) cos(2πσx+ Φ12(σ)).

It is the sum of the scaled photometric signals (an addi-
tive scintillation noise) and a sinusoid whose amplitude is
modulated by the geometric average of the injection effi-
ciencies (a multiplicative noise).

5.2. Wide band interferogram

The wide band interferogram is calculated by integration
of the monochromatic signals over the optical bandpass:

I(x) =

∫ +∞

0

Iσ(x) dσ. (34)

After having extended to negative wave numbers the va-
lidity range of all functions of σ (their value is set to 0 for
σ < 0), Eq. (34) yields:

I(x) = P1(x)
1

ηP1

∫ +∞

0

κ1(σ) ηP1(σ)B(σ) dσ (35)

+P2(x)
1

ηP2

∫ +∞

0

κ2(σ) ηP2(σ)B(σ) dσ

+

∫ +∞

−∞
P (x)B(σ)κ′(σ)µ12(σ) ejΦ12(σ) ej2πσx dσ

+

∫ +∞

−∞
P (x)B(σ)κ′(σ)µ12(σ) e−jΦ12(σ)

e−j2πσx dσ.

The first two lines of Eq. (35) are related to the wide band
scintillation noise. The last two lines can be identified with
an inverse Fourier transform, and the multiplicative noise
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of the fringe signal in the OPD space becomes a convolu-
tion in the wave number space:

I(x) = κ1 P1(x) + κ2 P2(x) (36)

+F−1
{
P̃(σ) ∗

(
B(σ)κ′(σ)µ12(σ) ejΦ12(σ)

)}
+F−1

{
P̃(σ) ∗

(
B(−σ)κ′(−σ)µ12(−σ) e−jΦ12(−σ)

)}
.

In what follows we will use either the symbol F or the
tilde ˜ for the Fourier transform (FT) operation. The FT
of the interferometric signal is:

Ĩ(σ) = κ1 P̃1(σ) + κ2 P̃2(σ) (37)

+ P̃(σ) ∗
(
B(σ)κ′(σ)µ12(σ) ejΦ12(σ)

)
+ P̃(σ) ∗

(
B(−σ)κ′(−σ)µ12(−σ) e−jΦ12(−σ)

)
= ĨLF + ĨHF+ + ĨHF− .

If the OPD scanning speed is fast enough for the fringe
frequency to be larger than the bandwidth of the coupling
fluctuations (typically a few tens of Hz), then the inter-
ferogram has two distinct components in the frequency
space:

– A low frequency scintillation noise, which is the spec-
trum of the coupling fluctuations into the fibers;

– An interferometric signal at a higher frequency (and
its Hermitic counterpart), which is the spectral inten-
sity of the source multiplied by the coherence factor
between the two beams and convolved with the FT of
the coupling fluctuations.
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It is known from Eq. (37) that in the wave number
space ĨHF is written as:

ĨHF(σ) = P̃(σ) ∗
[
B(σ)κ′(σ)µ12(σ) ejΦ12(σ) (39)

+ B(−σ)κ′(−σ)µ12(−σ) e−jΦ12(−σ)
]
,

which yields by inverse Fourier transform in the OPD do-
main, where the convolution by the scintillation noise be-
comes a product:

IHF(x) = P (x)F−1
{
B(σ)κ′(σ)µ12(σ)ejΦ12(σ) (40)

+ B(−σ)κ′(−σ)µ12(−σ)e−jΦ12(−σ)
}
.

Dividing by P (x) and going back to the wave number
space help us establish an interferometric signal Ĩcor which
is corrected from the atmosphere induced fluctuations:

Ĩcor(σ) =
1

2
F

{
IHF(x)

P (x)

}
(41)

=
1

2
B(σ)κ′(σ)µ12(σ) ejΦ12(σ)

+
1

2
B(−σ)κ′(−σ)µ12(−σ) e−jΦ12(−σ).

The factor 1/2 was introduced to normalize to 1 the inte-
gral of the modulus Ĩcor of Ĩcor in the canonical case where
κ′ = 1 and µ12 = 1.
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Fig. 6. Spectral power density of the corrected interferogram

Any departure from this approximation will be referred
to as “piston noise”, and we will see in Sect. 7.3 how its
relative importance as a noise source can be evaluated.

Now if µ2
12 is the integrated value, weighted by

B2(σ)κ′2(σ), of the squared modulus of the coherence fac-
tor:

µ2
12 =

∫ +∞
0 B2(σ)κ′2(σ)µ2

12(σ) dσ∫ +∞
0

B2(σ)κ′2(σ) dσ
, (44)

then µ2
12 can be deduced from S thanks to the relationship

µ2
12 =

4S∫ +∞
0

B2(σ)κ′2(σ) dσ
. (45)

6.3.1. The shape factor

From Eq. (45) it appears that the value of µ2
12 depends on

a weighting factor

F =

∫ +∞

0

B2(σ)κ′2(σ) dσ, (46)

which is intrinsic to the photometric behavior of the
system and to the spectral intensity distribution of the
source.

In practice, the quantity of interest is not the coherence

factor per se but the visibility V
(?)
12 of the source, which

is obtained after the interferometer has been calibrated
on a reference whose visibility V

(ref)
12 is well known. From

the relationships (28) and (29), the modulus of the object
visibility is given by:

V
(?)
12 = V

(ref)
12

µ12

µ
(ref)
12

, (47)

and the weighting factor disappears in the calibration pro-
cess if the source and the reference have the same spectral
intensity distribution2. Thus, provided the reference is ad-
equately chosen, the determination of F is not critical.

2 Rigorously speaking, this statement holds only as long as
the chromaticism ρσ of the injection efficiency, which appears
implicitly in F via the coefficient κ′(σ), does not vary signif-

Table 1. Shape factor computed for different sources, ob-
served with a standard K filter. For the stellar types, the
calculation was based on infrared FTS spectra (Lançon &
Rocca-Volmerange 1992)

Source FB (cm)

Stellar type G5III 8.95 10−4

Stellar type M0III 9.08 10−4

Stellar type M2V 8.98 10−4

Stellar type M4III 9.20 10−4

Stellar type M7V 9.17 10−4

Stellar type M8III 1.02 10−3

Blackbody T = 3000 K 8.91 10−4

Blackbody T = 6000 K 8.94 10−4

Blackbody T = 10000 K 8.96 10−4

Usually the coefficient F cannot be established directly
because the quantity κ′(σ), defined by Eq. (32):

κ′(σ) = κ(σ)

√
ηP1(σ)ηP2(σ)
√
ηP1ηP2

, (48)

is difficult to measure at all wave numbers. We can make
the reasonable approximation that κ′ is achromatic and
for all wave numbers

κ′(σ) = κ =
√
κ1κ2. (49)

This assumption holds all the better as the couplers are
less chromatic, but it is never rigorously true because of
the chromaticism ρσ of the injection efficiency that is in-
cluded in the ηPj coefficients (the global efficiency of the
photometric channels). Nevertheless, any departure from
the approximation can be seen, in the first order, as a
purely instrumental effect, which is then included in the
transfer function Ti.

Once κ′(σ) has been set to a constant value the deter-
mination of F is equivalent to the determination of an-
other factor, FB , which involves the source only and is
defined by

FB =
F

κ2 . (50)

It will be called the shape factor because it depends on the
shape of the normalized spectral intensity distribution:

FB =

∫ +∞

0

B2(σ) dσ. (51)

icantly between the observations of the object and the refer-
ence. It might be possible that this effect becomes apparent
with very large telescopes, because of differential refraction,
if the two sources are observed at different zenithal distances
(Coudé du Foresto 1994).
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Some numerical values of FB are given in Table 1 for dif-
ferent types of sources observed with a standard K filter.
The deeper the spectral features of the source, the larger
the value of FB. But if we except the very late type class
M8III, the relative variation of the shape factor with the
stellar spectral class is contained within 3%. For a black-
body, FB depends very little on the temperature.

7. Dealing with noisy data

We consider here that the photometers in the fiber in-
terferometer are detector noise limited. Each signal mea-
surement is then affected by an additive, stationary noise,
uncorrelated with the data. For each interferogram, a re-
alization of the four noise signals is recorded in the back-
ground current sequences. These noise signals have to be
taken into account when estimating the photometric sig-
nals and the squared coherence factor.

7.1. Estimating the photometric signals

The measurement MPj of the signal produced by photo-
metric detector Pj is the sum of Pj(x) and the additive
noise bPj (x):

MPj(x) = Pj(x) + bPj(x). (52)

The estimator P̂j of Pj that minimizes the mean
quadratic error with the actual signal is obtained by opti-
mal filtering (Press et al. 1988):

P̂j(x) = F−1
{
Wj(σ) M̃Pj(σ)

}
, (53)

where Wj(σ) is the Wiener filter, whose expression is,
when the signal and the noise are uncorrelated:

Wj(σ) =

∣∣∣P̃j(σ)
∣∣∣2∣∣∣P̃j(σ)

∣∣∣2 +
∣∣∣b̃Pj(σ)

∣∣∣2 (54)

=

∣∣∣M̃Pj(σ)
∣∣∣2 − ∣∣∣b̃Pj (σ)

∣∣∣2∣∣∣M̃Pj(σ)
∣∣∣2 .

The power spectrum of the background current can be

used to estimate
∣∣∣b̃Pj(σ)

∣∣∣2 = b̃2Pj(σ).

The quality of the deconvolution signal P̂ =

√
P̂1P̂2 is

critical to achieve a good interferogram correction. What
matters is not the average of P̂ (x) but rather its smallest
value: if at the minimum the local signal to noise ratio
is too low, then the division is numerically unstable and
the interferogram correction process is useless. Therefore
it is necessary to adopt a selection scheme: if the minimum
value of P̂1 or P̂2 is below a certain rejection threshold,
then the interferogram is discarded and does not lead to

a fringe visibility measurement. For a photometric signal
P̂j, the rejection threshold can be expressed as a multiple
of the standard deviation σbj of the corresponding back-
ground sequence, filtered by Wj .

There is a trade-off in the choice of the rejection thresh-
old, between rejecting only a few interferograms and hav-
ing a better correction. For sufficiently good data this
choice is not critical, as the correction quality does not
significantly depend on the minimum value of the P̂j as
long as this value is greater than 10σbj . For faint objects
or in bad seeing conditions, one may have to use rejection
thresholds as low as 3 σbj .

7.2. Estimating the squared coherence factor

We should now seek an estimator of the coherence factor
that is not biased by detector noise. The signalM(x) actu-
ally measured at the output of the interferometric detector
contains an additive noise bI(x):

M(x) = I(x) + bI(x). (55)

If the data processing described in the preceding sections
is applied to M , it leads in the wave number space to

M̃cor(σ) = Ĩcor(σ) + b̃cor(σ), (56)

and, since the signal and the noise are uncorrelated, their
moduli add quadratically:

M̃2
cor(σ) = Ĩ2

cor(σ) + b̃2cor(σ), (57)

which yields, in the integral form that is assumed to be
valid when there is differential piston:∫ +∞

0

M̃2
cor(σ) dσ =

∫ +∞

0

Ĩ2
cor(σ) dσ+

∫ +∞

0

b̃2cor(σ) dσ(58)

SM = S + Sb (59)

An estimator Ŝb of the noise integral is obtained by
applying to the current signal the same treatment that
was used to process M . A better estimator is obtained by
processing many realizations of the interferometric back-
ground current (for example, all the background sequences
of a complete batch), and averaging the resulting power
spectra. Eq. (58) then provides an estimator of S:

Ŝ = SM − Ŝb, (60)

from which Eq. (45) enables us to establish an unbiased
estimator of the squared modulus of the coherence factor,
averaged over the optical bandpass:

µ̂2
12 =

4 Ŝ

κ2 FB
. (61)

The quantity µ̂2
12 is the final result of the data reduction

process on a single interferogram.
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Fig. 7. Result of the data reduction on a batch of 122 interfero-
grams of αBoo. The adopted shape factor was FB = 9 10−4 cm.
Because of mediocre seeing conditions, the rejection threshold
was set to 3: only 47 interferograms met this level and led
to a measurement of the squared coherence factor. For that
batch the final estimate of the squared coherence factor is
µ2 = 0.367± 0.0084

7.3. Statistical error and noise sources

A batch of interferograms leads to a collection of n mea-
surements of the fringe visibility. An example is shown in
Fig. 7. The final estimate of the squared coherence factor

is the average of the µ̂2
12, and if σµ2 is the standard de-

viation of the estimator of µ2
12, then the standard error

is

εµ2 =
σµ2

√
n
. (62)

The final error estimate for µ̂2
12 should include the uncer-

tainties on κ and FB .
Fluctuations in the measurement of µ2

12 can be at-
tributed to three main noise sources:

– Detector noise: because of statistical fluctuations of the
noise in the interferometric detector, the estimation Ŝb
is not exactly the noise integral Sb;

– Deconvolution noise: because of residual noise in the
optimally filtered photometric signals, the interfero-
metric signal is divided by an estimation P̂ that differs
from the true deconvolution signal P . An adequate re-
jection threshold should ensure that the deconvolution
noise is low (or even negligible);

– Piston noise: in the presence of differential piston, the
integral relationship (43) is only an approximation.

Another source of “noise” results from the incomplete
realization of the chromaticism assumption developed in
Sect. 3.2. It will not be discussed here, since in the stan-
dard operating conditions of an infrared fiber interferome-
ter (d/r0 ≤ 4, bandpass limited by the atmospheric trans-
mission window) its effects are always negligible.

Although we have so far considered only one interfer-
ometric output, each scan provides two measurements of
µ2

12. Coherence factor measurements on each output must

be treated separately because each channel has its own in-
strumental transfer function. But the correlation between
the two channels can tell us about the relative importance
of the noise sources.

Detector noise is fully uncorrelated between the two
interferometric outputs. Conversely, the differential pis-
ton perturbations are exactly the same on each output.
Deconvolution noise is very strongly correlated since the
deconvolution signal is the same for both channels, but
not fully correlated because the deconvolution is applied
to two separate measurements of the interferometric sig-
nal, each one affected by independent noise.

LetM
(1)
µ2 be the estimator of µ2

12 for Channel 1 (Eq. 61)

andM
(2)
µ2 for Channel 2. The following holds without mak-

ing any assumption on the nature of the noise sources:{
M

(1)
µ2 = µ2

12 + bc + b
(1)
uc

M
(2)
µ2 = µ2

12 + bc + b
(2)
uc

, (63)

where bc is the correlated part of the noise for Channel i,

and b
(i)
uc is the uncorrelated part. For each interferogram,

it is possible to measure the difference M∆µ2 between the
two estimators, i.e.

M∆µ2 = M
(2)
µ2 −M

(1)
µ2 (64)

= b(2)
uc − b

(1)
uc

and for a batch of scans the variance of M∆µ2 is the sum
of the variances of the uncorrelated noises:

σ2
∆µ2 = σ2

uc1 + σ2
uc2. (65)

If two photometers of the same type have been employed
to measure the interferometric outputs, the statistics of
the uncorrelated noise is the same on both channels. It is
then possible to determine the variance of the uncorrelated
noise:

σ2
uc =

σ2
∆µ2

2
. (66)

The variance of the correlated noise follows immediately
from Eq. (63):

σ2
c = σ2

µ2 − σ2
uc. (67)

From what was said above, we can with a good approx-
imation identify σ2

uc with the detector noise, and σ2
c with

the joint contribution of piston and deconvolution noise.
Thus simultaneous measurements of both interferometric
outputs make it possible to tell the relative contribution
of detector noise to the total noise.

This is useful to work out the optimum fringe speed
v, which is the result of a compromise. On the one hand
detector noise increases with v, because for a given optical
bandpass the fringe signal is spread over a wider frequency
bandpass. On the other hand the faster the interferogram
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is scanned, the more frozen is the seeing for the duration of
the scan, and the piston perturbations are smaller. In the
αBoo example, 44% of the noise variance is uncorrelated,
which means that no single source dominates the noise.

8. Practical considerations

8.1. Signal synchronization

Before beginning the data reduction process it is impor-
tant to ensure that all recorded signals are synchronized
with an accuracy better than one sample interval δx. This
might not be true if for example the interferometric and
photometric signals are delayed by different electronics
(e.g., analog filters) before being digitized and recorded.
In that case, the amount of desynchronization can be eval-
uated by looking at the position of the correlation peak
between I and the best linear fit to I of P1 and P2. A cor-
responding offset is then applied to the relevant signals;
this leaves a few samples at the beginning or the end of
the sequence as undefined.

8.2. Apodization

An apodization of the corrected interferometric signal is
necessary for several reasons: it solves the problem of un-
defined samples for the signals that have been synchro-
nized, and it removes potential boundary effects when Fast
Fourier Transforms (FFTs) are performed. Because it re-
duces the effective length of the sequence, apodization also
contributes to attenuate the detector and piston noises.

Therefore before measuring Ŝ, the signal Mcor(x) is
multiplied by an apodization window A(x). Any smoothly
varying function could be employed; the following function
was chosen (assuming the OPD scan spans the interval
[−∆x/2,∆x/2]):

A(x) =


0 |x| > |x2|

cos
[
π
4

(
|x|−|x1|
|x2−x1|

)]
|x1| ≤ |x| ≤ |x2|

1 |x| < |x1|

. (68)

Thus the window blocks out the signal for |x| > |x2|, and
provides a smooth transition to full transmission for |x1| ≤
|x| ≤ |x2|. The choice of x1 and x2 is not critical and
depends essentially on the number of fringes that can be
seen above the noise level of the interferometric detector.
In the αBoo example, the signal is blocked out for 0.2 ∆x
on each side of the scans, and the length of the transition
regions is 0.1 ∆x.

8.3. Computing the Wiener filters

For each photometric signal, the corresponding optimal
filter is estimated by using the power spectrum of the

background current sequence as an estimator
̂̃
b2Pj(σ) of

the noise power spectral density. It is expected that the

value of Ŵ is close to 1 for low frequencies where the pho-
tometric signal is strong, and decreasing to zero at higher
frequencies where detector noise dominates.

A problem arises at some higher frequencies when, be-
cause of statistical fluctuations in the noise power density,

the estimated noise power
̂̃
b2Pj (σ) is smaller than the mea-

sured signal power M̃2
Pj

(σ). This would imply a negative
value for the Wiener filter. To avoid this, the estimated
Wiener filter is defined as such:

Ŵ (σ) =


1 σ = 0

M̃2
Pj

(σ)− ̂̃b2
Pj

(σ)

M̃2
Pj

(σ)
σ ≤ σ0

0 σ > σ0

, (69)

where σ0 is the smallest wave number that meets the con-

dition M̃2
Pj

(σ) <
̂̃
b2Pj(σ). The value of Ŵ (σ) is forced to

1 at the continuum to maintain the average value of the
photometric signal.
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Fig. 8. Spectral power of a photometric signal (top, note the
logarithmic scale) and its associated Wiener filter (bottom)

Figure 8 shows an example of photometric power den-
sity and the associated Ŵ .

8.4. Numerical evaluation of Ŝ

Here is a link from the continuous world of functions to
the discrete world of computer data. The physical signal
M(x) is sampled every δx and recorded in the computer
as a series of numbers yi (i = 0, 1, . . ., N − 1) such that:

yi = M(i δx). (70)
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Data reduction is performed by the computer on the yi
series. The continuous Fourier transform is replaced by
a Fast Fourier Transform, which produces a new series
of N numbers (harmonics) Yk. Positive frequencies are
represented by harmonics Y1 to YN/2 (with YN/2 being
the Nyquist harmonic). If the physical signal was correctly
sampled (i.e. if M̃(σ) = 0 for σ ≥ Nδσ/2), then each Yk

(k = 0, . . . , N/2) is linked to M̃(σ) by the relationship
(Brigham 1974):

Yk = N δσ M̃(k δσ). (71)

Therefore the numerical data reduction process yields a
final series Zk of complex numbers whose moduli for k =
0, . . . , N/2 are linked to M̃cor(σ) by:

Z2
k = N2 δσ2 M̃2

cor(k δσ). (72)

The integral SM of the squared modulus of M̃cor can
be evaluated numerically using the trapezoidal rule:

SM =

∫ +∞

0

M̃2
cor(σ) dσ (73)

'
δσ

2

(
M̃2

cor(0) + M̃2
cor(

N

2
δσ)

)
+

N
2 −1∑
k=1

M̃2
cor(k δσ) δσ

It follows that the numerical value of SM can be computed
from the Zk series with:

SM =
1

N2 δσ

1

2

(
Z2

0 + Z2
N/2

)
+

N
2 −1∑
k=1

Z2
k

 . (74)

The numerical evaluation of Ŝb is performed in a similar
way.

8.4.1. Choice of integration range

In principle, to minimize the statistical fluctuations of Sb
the integration boundaries could be reduced to the wave
number range corresponding to the optical bandpass of
the system. In practice, a wider range is required because
the piston perturbations spread the interferometric signal
over a range larger than the nominal bandpass. A compro-
mise has to be adopted, between not risking to miss part
of the signal spread by the piston, and reducing the statis-
tical fluctuations of Sb. Experience proved that this choice
is not critical. In the αBoo example, integration was per-
formed between 3000 and 6000 cm−1, to be compared with
an optical bandpass in the K band of 4000− 5000 cm−1.

9. Generalization

Much of the data reduction procedure detailed in this pa-
per can be applied even if the photometric signals P1 and
P2 cannot be measured (if for example the fiber unit con-
tains only a single X coupler), provided that the scintil-
lation noise and the fringe signal do not overlap in the
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Ĩ
′c
o
r (σ

)
a
s:

Ĩ
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and we have seen how these signals are used to correct in-
terferograms from the photometric fluctuations. The cor-
rection is essentially a deconvolution, and a criterion was
established to reject those scans for which this operation
is not numerically stable. Corrected interferograms then
lead to coherence factor measurements that are linked to
the object visibility by a purely instrumental transfer func-
tion, where atmospheric turbulence is not involved. This
feature greatly improves the accuracy of object visibility
measurements.

One turbulence mode, however, is not filtered out by
the fibers: the differential piston, which can be either re-
moved by a fringe tracking system or reduced (at the
expense of increasing detection noise) by scanning the
OPD more rapidly. If there is no piston we saw that the
data contain both spatial and spectral information on the
source. This is the basis of double Fourier interferome-
try, a very promising technique for instruments which are
equipped with a fringe tracker. Double Fourier interfer-
ometry with fibers can be achieved only if time and wave-
length are effectively independent variables in the starlight
injection function, and further work remains to be done
in order to determine what this implies in terms of optical
bandpass and input wavefront quality.

When piston perturbations exist, the phase and spec-
tral information on the source is lost: then only the mod-
ulus of the coherence factor, integrated over the optical
bandpass, can be accessed, through the amount of energy
in the high frequency part (fringe signal) of the Fourier
transform of the interferogram. An expression was derived
for a noise bias free estimator of the squared modulus of
the coherence factor. It depends (in a non critical way)
of a spectral weighting factor, whose numerical value is
given for different types of sources. The dispersion of the
measured squared coherence factor is caused mainly by
detector and piston noise, in relative proportions that can
be evaluated.

The end result is an object visibility measurement with
a statistical accuracy than can be better than 1% in a few
tens of interferograms. The large gain in precision pro-
vided by single-mode fibers over conventional (dioptric)
optics opens long baseline interferometry to a whole new
class of astrophysical problems (Perrin et al. 1977).
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