1 The Search Algorithm

1.1 Local rectangular coordinates

The angular coordinates Right Ascension (α) and Declination (δ) of a star specify a point \hat{r}^{1} on the three dimensional unit celestial sphere given by

$$
\hat{r}=\left[\begin{array}{c}
\cos \delta \cos \alpha \tag{1}\\
\cos \delta \sin \alpha \\
\sin \delta
\end{array}\right]
$$

This vector can be considered as one of a set of three orthogonal unit vectors at the point \hat{r} on the unit sphere, the other two being given by

$$
\hat{\alpha}=\left[\begin{array}{c}
-\sin \alpha \tag{2}\\
\cos \alpha \\
0
\end{array}\right], \quad \hat{\delta}=\left[\begin{array}{c}
-\sin \delta \cos \alpha \\
-\sin \delta \sin \alpha \\
\cos \delta
\end{array}\right]
$$

where $\hat{\alpha}$ and $\hat{\delta}$ are respectively in the directions of locally increasing right ascension and declination, as can be seen be differentiating \hat{r} with respect to α or δ and then renormalizing. Clearly, $\hat{\alpha}$ and $\hat{\delta}$ lie in the plane tangential to the unit sphere at the point \hat{r}, and normal to the direction of the vector \hat{r}.

1.2 The equation of a spiral

The equation of a spiral in the plane in polar coordinates is

$$
\begin{equation*}
r=\frac{w}{2 \pi} \theta \tag{3}
\end{equation*}
$$

where w is the width between two successive passes through equivalent angles. For any vector expressed in polar coordinates, the speed is given by

$$
\begin{equation*}
s=\sqrt{\dot{r}^{2}+r^{2} \dot{\theta}^{2}} . \tag{4}
\end{equation*}
$$

We wish to traverse our spiral at a constant speed. Substituting 3 into 4 one finds

$$
\begin{equation*}
s=\frac{w}{2 \pi} \dot{\theta} \sqrt{1+\theta^{2}} \tag{5}
\end{equation*}
$$

and solving for $\frac{d \theta}{d t}$ gives

$$
\begin{equation*}
\frac{d \theta}{d t}=\frac{2 \pi s}{w \sqrt{1+\theta^{2}}} \tag{6}
\end{equation*}
$$

In principle, this differential equation can be solved by separation of variables, ${ }^{2}$ but in practice it is unnecessary to do so since for our purposes the smallest

[^0]$$
\frac{\theta \sqrt{1+\theta^{2}}}{2}+\frac{\sinh ^{-1} \theta}{2}=\frac{2 \pi s}{w} t
$$

Solving for $\theta(t)$ is left as an exercise for the reader.
time interval of interest is the period of one master card interrupt, Δt. In effect, we integrate this differential equation numerically:

$$
\begin{align*}
\Delta \theta(t) & =\frac{2 \pi s}{w \sqrt{1+\theta(t)^{2}}} \Delta t \\
\theta(t+\Delta t) & =\theta(t)+\Delta \theta(t) . \tag{7}
\end{align*}
$$

Thus, given θ from the previous interrupt and the time interval between interrupts we can calculate θ for the current interrupt. Once we have θ, we can get r from 3 , and then convert to rectangular coordinates as

$$
\begin{align*}
x(t) & =\frac{w}{2 \pi} \theta(t) \cos \theta(t) \\
y(t) & =\frac{w}{2 \pi} \theta(t) \sin \theta(t) . \tag{8}
\end{align*}
$$

where $x(t)$ and $y(t)$ are the cartesian coordinates corresponding to polar coordinates $r(t)$ (as given in 3) and $\theta(t)$ (given by the solution of 6).

1.3 Spiral on the Celestial Sphere

Our goal is to execute a spiral search on the plane locally tangent to the nominal position of the star on the celestial sphere. Combining 6 and 8 gives us the cartesian coordinates $x(t)$ and $y(t)$ of a constant speed spiral trajectory in a plane. Equation 2 gives two vectors $\hat{\alpha}$ and $\hat{\delta}$ which define the plane tangent to the nominal position of the star and therefore

$$
\begin{equation*}
\hat{r}^{\prime}(t)=\hat{r}+x(t) \hat{\alpha}+y(t) \hat{\delta} \tag{9}
\end{equation*}
$$

is the equation of the spiral we want.
Notice that since $\hat{\alpha}$ and $\hat{\delta}$ are perpendicular to $\hat{r}, \hat{r}^{\prime}$ is appoximately a unit vector for small x and y. However, since \hat{r}^{\prime} remains in the plane tanget to the unit sphere at \hat{r} and proper direction vectors lie in the unit sphere, it is in general necessary to renormalize \hat{r}^{\prime}.

[^0]: ${ }^{1}$ With some abuse of notation the symbol \hat{r} will be used to refer to both a point on the surface of the unit sphere and to the vector which connects the origin to that point.
 ${ }^{2}$ For those who are dying to know, the solution is

