
1 The Pointing Model

The pointing model is the mathematical transformation which converts a star’s
apparent topocentric position to the roll and tilt positions necessary to point
the siderostat. The transformation consists of three invertible steps, each of
which introduces two parameters, for a total of six.

1.1 Pedestal orientation

The two parameters which describe the relationship of the telescope coordinate
system to the topocentric coordinate system are the azimuth A and altitude a
of the roll (z) axis. Astronomical convention measures azimuths positive from
north eastward, and therefore to move the z axis of the topocentric coordinate
system to a given azimuth A requires a rotation by −A around the x axis. It
can then be moved to the altitude a by a rotation by a around the y axis. The
two rotations in succession are described by the matrix


 cos a 0 − sina

0 1 0
sin a 0 cos a





 1 0 0

0 cosA − sinA
0 sin A cosA


 =


 cos a − sina sin A − sina cosA

0 cosA − sinA
sina cos a sin A cos a cosA


 (1)

The matrix which describes the transformation from telescope to local topocen-
tric coordinates is

M =


 cosD 0 − sinD

sin D sin A cosA cosD sinA
sin D cosA − sinA cosD cosA


 (2)

Since this is a unitary transformation, the inverse of this matrix is its transpose
and defines the transformation from local topocentric to telescope coordinates.
Therefore, if ŝ is the star’s position unit vector in local topocentric coordinates,
then its position vector expressed in telescope coordinates x̂ is

x̂ = MTŝ or xj =
3∑

i=1

Mijsi (3)

Obviously, this operation can be inverted to get ŝ from x̂

ŝ = Mx̂. (4)

1.2 Optical axis

The optical axis of the telescope nominally should coincide with the roll axis
of the siderostat, which is the z axis in the telescope coordinate system. In

1



practice, this is not the case, and in order to point the telescope we must place
the vector normal to the siderostat so that it bisects the angle between the star’s
position vector x̂ and the optical axis of the telescope v̂. The angles θ and φ
which describe the position of the optical axis v̂, i.e.

v̂ =


 cos θ cosφ

cos θ sin φ
sin θ


 (5)

and which can be thought of as the tilt and roll positions of the optical axis, are
the next two parameters in the pointing model. The unit vector ŷ which bisects
the angle between x̂ and v̂ is given by

ŷ =
x̂ + v̂

|x̂ + v̂| or yj =
xj + vj

|x̂ + v̂| . (6)

y

v

x

v y.

Figure 1: ŷ = x̂+v̂
|x̂+v̂|

This operation can be inverted to get x̂ given ŷ and v̂. As can be seen from
Figure (1), the length of the vector x̂+ v̂ is twice v̂ · ŷ, and since ŷ is a unit vector
in the direction x̂ + v̂, x̂ + v̂ = 2(v̂ · ŷ)ŷ. Therefore

x̂ = 2(v̂ · ŷ)ŷ − v̂ (7)

1.3 Home positions

The home positions of the roll and tilt axes are defined by opto-interrupters
which have been placed on the axes near the zero positions defined by the
telescope coordinate system. Since it is not practical to try to place the opto-
interrupters exactly on the zero positions, and yet it is convenient to define the
home positions to be the zero positions, two additive constants R0 and T0 are
introduced to account for the home positions of the axes. These are the last two
parameters in the pointing model. Using equation ??, the roll and tilt positions
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to point the normal to the siderostat in the direction ŷ are

R = arctan(
y2

y1
) + R0

T = arcsin(y3) + T0. (8)

A Partial derivatives

This appendix gives the derivations of the partial derivatives of the roll and tilt
positions with respect to the pointing parameters, which are used to build the
normal equations for fitting the pointing model.

A.1 Preliminaries

Notice that if pα is any of the parameters D, A, θ, or φ, then

∂R

∂pα
=

y2
1

y2
1 + y2

2

y1
∂y2
∂pα

− y2
∂y1
∂pα

y2
1

=
y1

∂y2
∂pα

− y2
∂y1
∂pα

y2
1 + y2

2

(9)

and
∂T

∂pα
=

1√
1 − y2

3

∂y3

∂pα
. (10)

Also notice that since
yk =

xk + vk

|x̂ + v̂|
the dependence on D and A enters only through x̂ and the dependence on θ and
φ enters only through v̂. Therefore, if pβ is either D or A

∂yk

∂pβ
=

|x̂ + v̂|∂xk

∂pβ
− (xk + vk) ∂

∂pβ
|x̂ + v̂|

|x̂ + v̂|2 =
1

|x̂ + v̂|
(

∂xk

∂pβ
− yk

∂

∂pβ
|x̂ + v̂|

)

(11)
and if pγ is either θ or φ

∂yk

∂pγ
=

1
|x̂ + v̂|

(
∂vk

∂pγ
− yk

∂

∂pγ
|x̂ + v̂|

)
. (12)

If we insert equation (11) into equation (9) and take advantage of the fact that

y1
∂y2

∂pβ
− y2

∂y1

∂pβ
=

y1

|x̂ + v̂|
(

∂x2

∂pβ
− y2

∂

∂pβ
|x̂ + v̂|

)

− y2

|x̂ + v̂|
(

∂x1

∂pβ
− y1

∂

∂pβ
|x̂ + v̂|

)

=
1

|x̂ + v̂|
(

y1
∂x2

∂pβ
− y2

∂x1

∂pβ

)
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we find that
∂R

∂pβ
=

1
(y2

1 + y2
2)|x̂ + v̂|

(
y1

∂x2

∂pβ
− y2

∂x1

∂pβ

)
(13)

and similarly if we insert equation (12) into equation (9)

∂R

∂pγ
=

1
(y2

1 + y2
2)|x̂ + v̂|

(
y1

∂v2

∂pγ
− y2

∂v1

∂pγ

)
. (14)

Equations (11) and (10) give us

∂T

∂pβ
=

1√
1 − y2

3 |x̂ + v̂|

(
∂x3

∂pβ
− y3

∂

∂pβ
|x̂ + v̂|

)
(15)

and equations (12) and (10) give

∂T

∂pγ
=

1√
1 − y2

3 |x̂ + v̂|

(
∂v3

∂pγ
− y3

∂

∂pγ
|x̂ + v̂|

)
. (16)

A.2 Subderivatives

Inspection of equations (13) through (16) reveals that we must compute ∂xk

∂pβ
,

∂vk

∂pγ
, and ∂

∂pα
|x̂ + v̂|. To compute ∂xk

∂pβ
, notice that

∂Mi1
∂D = Mi3

∂Mi1
∂A = Mi2 sin D

∂Mi2
∂D = 0 ∂Mi2

∂A = −Mi1 sin D − Mi3 cosD

∂Mi3
∂D = −Mi1

∂Mi3
∂A = Mi2 cosD

and therefore since ŝ is independent of all pointing parameters and

xk =
3∑

i=1

Miksi

we have
∂x1
∂D = x3

∂x1
∂A = x2 sin D

∂x2
∂D = 0 ∂x2

∂A = −x1 sin D − x3 cosD

∂x3
∂D = −x1

∂x3
∂A = x2 cosD

(17)

From the definition of v̂, equation (5) one finds

∂v1
∂θ = −v3 cosφ ∂v1

∂φ = −v2

∂v2
∂θ = −v3 sin φ ∂v2

∂φ = v1

∂v3
∂θ = v1 cosφ + v2 sin φ ∂v3

∂φ = 0

(18)
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To calculate the derivatives of |x̂ + v̂|, first notice that

∂

∂pβ
|x̂ + v̂| =

∂

∂pβ

√√√√ 3∑
i=1

(xi + vi)2 =

∑3
i=1 (xi + vi) ∂xi

∂pβ

|x̂ + v̂| (19)

and similarly
∂

∂pγ
|x̂ + v̂| =

∑3
i=1 (xi + vi) ∂vi

∂pγ

|x̂ + v̂| (20)

Expanding the sum in (19) and using (17) we find

∂

∂D
|x̂ + v̂| =

(x1 + v1)x3 − (x3 + v3)x1

|x̂ + v̂|
=

v1x3 − v3x1

|x̂ + v̂| (21)

and

∂

∂A
|x̂ + v̂| =

1
|x̂ + v̂| [(x1 + v1)x2 sinD − (x2 + v2)(x1 sin D + x3 cosD)

+(x3 + v3)x2 cosD]

=
1

|x̂ + v̂| [(v1x2 − v2x1) sin D − (v2x3 − v3x2) cos D] (22)

Expanding the sum in (20) and using (18) we find

∂

∂θ
|x̂ + v̂| =

1
|x̂ + v̂| [−(x1 + v1)v3 cosφ − (x2 + v2)v3 sin φ

+(x3 + v3)(v1 cosφ + v2 sin φ)]

=
1

|x̂ + v̂| [(x3v1 − x1v3) cosφ + (x3v2 − x2v3) sin φ] (23)

and

∂

∂φ
|x̂ + v̂| =

−(x1 + v1)v2 + (x2 + v2)v1

|x̂ + v̂|
=

x2v1 − x1v2

|x̂ + v̂| (24)

A.3 The Punchline

Combining equations (13) and (17) we have

∂R

∂D
=

−y2x3

(y2
1 + y2

2)|x̂ + v̂| (25)

and
∂R

∂A
=

−(x1y1 + x2y2) sin D − x3y1 cosD

(y2
1 + y2

2)|x̂ + v̂| . (26)
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Combining equations (14) and (18) we have

∂R

∂θ
=

y2v3 cosφ − y1v3 sin φ

(y2
1 + y2

2)|x̂ + v̂| (27)

and
∂R

∂φ
=

y1v1 + y2v2

(y2
1 + y2

2)|x̂ + v̂| . (28)

And of course, trivially

∂R

∂R0
= 1 and

∂R

∂T0
= 0. (29)

Combining equations (15), (17), and (21) we have

∂T

∂D
=

−1√
1 − y2

3 |x̂ + v̂| (x1 + y3
v1x3 − v3x1

|x̂ + v̂| ) (30)

and using (15), (17), and (22)

∂T

∂A
=

1√
1 − y2

3 |x̂ + v̂| (x2 cosD − y3
(v1x2 − v2x1) sin D − (v2x3 − v3x2) cosD

|x̂ + v̂| ).

(31)
Combining equations (16), (18), and (23) we have

∂T

∂θ
=

1√
1 − y2

3 |x̂ + v̂| ×

(v1 cosφ + v2 sinφ − y3
(x3v1 − x1v3) cos φ + (x3v2 − x2v3) sinφ

|x̂ + v̂| )

(32)

and using (16), (18), and (24)

∂T

∂φ
=

−y3(x2v1 − x1v2)√
1 − y2

3 |x̂ + v̂|2 . (33)

And, finally, it is trivial that

∂T

∂R0
= 0 and

∂T

∂T0
= 1 (34)

Equations (25) through (34) give the partial derivatives of the observables (roll
and tilt positions where the stars are found) with respect to the pointing model
parameters (D, A, θ, φ, V0, and S0).
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A.4 Implementation

The following function evaluates the partial dervatives for the pointing model
passed in this at the topocentric vector passed in topo and returns the values
in the arrays dR and dT. The elements of the array dR

void partials(pointing model ∗this, double topo[ ], double dR[ ], double
dT[ ])
{

double x[3], y[3], v[3], m, f, sD, cD, sP, cP;

vector copy(v, this→v);
vector multiply(x, this→MT, topo);
vector sum(y, x, v);
m = modulus(y);
normalize(y);
cD=cos(this→dip);
sD=sin(this→dip);
cP=cos(this→phi);
sP=sin(this→phi);
f = 1/((y[0]∗y[0]+y[1]∗y[1])∗m);
dR[0] = -f∗y[1]∗x[2];
dR[1] = -f∗((x[0]∗y[0]+x[1]∗y[1])∗sD+x[2]∗y[0]∗cD);
dR[2] = f∗(y[1]∗v[2]∗cP-y[0]∗v[2]∗sP);
dR[3] = f∗(y[0]∗v[0]+y[1]∗v[1]);
dR[4] = 1;
dR[5] = 0;
f = 1/(sqrt(1-y[2]∗y[2])∗m);
dT[0] = -f∗(x[0]+y[2]∗(v[0]∗x[2]-v[2]∗x[0])/m);
dT[1] =

f∗(x[1]∗cD-y[2]∗((v[0]∗x[1]-v[1]∗x[0])∗sD-(v[1]∗x[2]-v[2]∗x[1])∗cD)/m);
dT[2] = f∗(v[0]∗cP+v[1]∗sP-

y[2]∗((x[2]∗v[0]-x[0]∗v[2])∗cP+(x[2]∗v[1]-x[1]∗v[2])∗sP)/m);
dT[3] = -f∗y[2]∗(x[1]∗v[0]-x[0]∗v[1])/m;
dT[4] = 0;
dT[5] = 1;

}
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